Objetos Auxiliares - Salvador Jover

s.jover@wanadoo.es

Objetos auxiliares |

A medida que se avanza en el conocimiento de Delphi, se
descubre un mundo lleno de posibilidades; un mundo
invisible en nuestro primer contacto con el entorno; un
mundo que se hace necesario conocer.

Pudiéramos pensar, erréneamente, que la Biblioteca de componentes visuales (VCL) se limita a aquellos que nos
proporciona la paleta de componentes, es decir, a todos aquellos componentes que se han derivado inicialmente de
TComponent, y nada mas lejos de la realidad. No es extrafio pensarlo, sobretodo si tenemos en cuenta, como el entorno nos
va ocultando sucesivamente aquellos detalles de mas bajo nivel, facilitindonos el desarrollo de aplicaciones de forma
rapida y sencilla. A mi parecer, y ésta es una opinidn subjetiva, la primera vez que nos oculta todos estos detalles es cuando
tomamos contacto con la VCL: abrimos el entorno, situamos los distintos componentes de la paleta sobre nuestra ficha,
implementamos unas lineas de codigo en respuesta de un evento determinado, y a ejecutar... rapido y sencillo... Tan rapido
y sencillo que nos puede hacer olvidar el concepto mismo de VCL, del que, con un ejemplo sencillo, y comparado con un
arbol, diré que tan solo vemos sus hojas y acabamos ignorando el resto. Nos podemos quedar al final con la idea, de que
nos basta con distribuir un conjunto de componentes sobre nuestro TForm, 0 mas aun, de que siempre vamos a encontrar
un componente que resuelva un determinado problema. Es mas, Internet, hoy por hoy, es capaz de facilitarnos, ya sea
gratuitamente o previo pago, miles de componentes. Pero quizas, nos podemos ir convirtiendo, poco a poco, en
buscadores de objetos, sin mas afan; con el peligro de ir anquilosandonos en la comodidad del que todo lo encuentra.

Delphi nos ofrece mucho mas y esta en nosotros descubrirlo dia a dia. Ya hemos empezado a vislumbrarlo en muchos
de los articulos que han compuesto los dos primeros nimeros: desde aquel que nos hablaba de ventanas de Tavo Ibaceta,
pasando por el de José Luis Freire acerca de la variable Application, hasta el de Mario Rodriguez sobre la Shell de
Windows. En ese sentido, al escribir esta serie sobre los Objetos auxiliares que nos facilita Delphi, se pretende profundizar
sobre el funcionamiento de la VCL, ya que dichos objetos forman parte de la definicion de numerosas clases derivadas.

Pero vamos por partes. Es preciso, antes que nada, comentar que la VCL es una jerarquia de clases, asociada a Delphi
y a C++ Builder, y escrita en Object Pascal. Como jerarquia se entiende que existe una Unica raiz comin, TObject, de la
que descienden todos los objetos presentes en la VCL y se establecen, entre todos ellos, una relacion reciproca
ascendiente/descendiente. Ya tenemos una definicién. No hemos especificado la naturaleza de esta relacion reciproca entre
dos elementos cualquiera, ya que, a nuestro efecto, no seria estrictamente necesario. De hacerlo nos veriamos obligados a
introducir los conceptos de herencia y polimorfismo los cuales pueden pertenecer a un articulo especifico del tema. Nos
basta comprender que existe esa relacion. ¢Entonces, los componentes de la paleta? Bueno, los componentes de la paleta
descienden todos de la clase abstracta TComponent, descendiente a su vez de la clase TPersistent, descendiente a su vez de
la raiz TObject, y tienen unas caracteristicas que les hacen especiales: como que son manipulables tanto en tiempo de
ejecucion como de disefio —mediante el Inspector de Objetos — 0 que dicha clase implementa la capacidad de aparecer en la
paleta de componentes o situarse sobre la ventana de disefio. Ademas, la clase TComponent redefinira un método dinamico
de la clase TPersistent que ha de permitir asignar un propietario a cada componente, teniendo este propietario, la
obligacion y la capacidad de eliminar la memoria de los componentes asociados a él mediante esta relacion. Y quizés os
preguntareis el motivo por el que se introducen todos estos conceptos, ajenos en principio al tema que nos ocupa. Vamos a
abrir un nuevo apartado e intentaremos justificarlo.

Los objetos auxiliares.

Convendria responder a la duda planteada en el parrafo anterior: EI motivo por el que abordamos las particularidades
de TComponent, es para remarcar que dichos objetos auxiliares, puesto que no derivan de la clase TComponent, sino que
lo hacen directa o indirectamente de TObject, no pueden ni saben liberar la memoria asociada a su creacion de forma
automatica, por lo que hemos de hacerlo nosotros directamente. Lo veremos claramente si observamos el constructor de un
componente cualquiera. Vamos a poner como ejemplo TButton:

Constructor Create(AOwner: TComponet); override;

Lo mas basico de Delphi 1

Objetos auxiliares |

Cuando hacemos la llamada al método Create() pasaremos como parametro TComponent. Este sera el propietario de
nuestro botén y dispondra (el propietario) de una lista con todos los objetos que se han ido creando en la aplicacion y que
le han aceptado como propietario de los mismos, siendo entonces su responsabilidad el eliminarlos. Ese no sera el caso de
nuestro TList. TList hereda de TObject su constructor y la llamada a Create la realizaremos sin parametro alguno:

var

una_lista: TList;

begin

una_lista:= TList.Create;

end;

Esto, que aparentemente pueda pasar desapercibido en un primer momento, tiene importancia y no poca. En nosotros
recaera la obligacion de liberar la memoria del objeto creado. En nosotros, o en cualquier componente que estemos
construyendo y que los utilice. Ademas, por el mismo motivo comentado, tan solo seran manipulables en tiempo de disefio
integrados como parte de otro objeto descendiente de TComponent.

Pero llegamos a la parte central de este nuevo apartado. Ya sabemos algo sobre estos objetos pero necesitamos saber
gue tienen de especiales, o que les ha hecho tan interesantes para dedicarles atencion.

Leamos lo que nos dice la Guia del Desarrollador que acompafia a Delphi sobre ellos y nos vamos a quedar con dos
parrafos:

“...simplifican las tareas de programacion mas frecuentes.”

6

“En este apartado se describen varios objetos auxiliares que facilitan las siguientes tareas:

- Creacion y gestion de listas.

- Creacion y gestion de listas de cadenas.

- Modificacion del registro y los archivos INI de Windows.
- Envio de flujos de datos a un disco duro u otro dispositivo de almacenamiento.”

A primera vista, se podria desprender la idea de que dichos objetos se han creado, expresamente, dentro de un marco
de facilitar al programador una serie de objetos Utiles. Un vision menos superficial de estos objetos nos va a hacer pensar
gue, unos en mayor medida que otros, se haran necesarios en la construccion de la VCL. Pongamos un ejemplo cualquiera:
¢hubiera sido posible el desarrollo de la clase TComponent, tal y como la conocemos, sin el desarrollo anterior de la clase
TList o del concepto que ésta representa?.

TOhjectQueus T3tringlist
TCollectionltem
TOrderedlist

i/

C a3\ L e

TOhjectstack
M TOwnedCollection
=P Hereda de

=P Escliente de TComponentlist

Figura 1. Relacion jerarquica de los objetos relacionados con las listas.

Lo mas basico de Delphi 2

Objetos auxiliares |

El mismo sistema de notificaciones (algo de por si global a todos los componentes) esta basado en una instancia de la
clase TList, - que no es otra cosa que la implementacién de una lista de punteros- , y gracias a la misma, a este sistema de
notificaciones, cada componente mantiene una lista de los objetos a los que debe notificar su destruccién. Podriamos seguir
poniendo ejemplos, los encontrariamos en cada uno de los modulos que componen la VCL, pero se me antoja necesario,
seguir acotando el concepto de objeto auxiliar, tal y como se nos presenta en la Guia. Y la forma de hacerlo, toda vez que
comprendemos el sentido mas amplio de la palabra utilidad, es comentar o profundizar en las tareas que nos son facilitadas
por ellos.

Acerquémonos al tema que nos ocupa de forma introductoria, para tener una visidn global de los objetos sobre los
que, posteriormente, nos vamos a centrar.

Tareas, tareas, tareas...

La primera de las tareas que se describen en la Guia del Desarrollador es la de creacion y gestion de listas.
Incluiremos, también en este apartado, la creacion y gestion de listas de cadenas. Podéis echar una mirada a la Figura 1.
Alli estan representados, jerarquicamente, aquellos objetos que nos van a ayudar: TList, TObjectList, TComponentL.ist,
TQueue, TStack, TObjectQueue, TCLassList, TCollection, TOwnedCollection, TCollectionltem y TStringList. Un breve
comentario antes de continuar: estamos tomando como referencia Delphi 5.0. y C++ Builder 5.0. Es preciso hacer esta
anotacién ya que en versiones anteriores de VCL nos encontraremos que algunas clases nombradas aun no existen. El es
caso de TObjectList, TComponentList, TQueue, TStack, TObjectQueue o TCLassList, todas ellas pertenecientes al
modulo “contnrs.pas”.

Si observamos con un poco de detenimiento dicha figura, ya podemos empezar a matizar diferencias entre las tareas
que desempefiaran los objetos mencionados:

El primer grupo que mantiene unas caracteristicas comunes es el formado por los descendientes de la clase TList, la
clase que gestionara una lista de punteros. Todos tienen en comun, en cuanto parten de la misma raiz, la capacidad de
gestionar o mantener una coleccion homogénea de datos, que seran ordenados en una posicion determinada. Es decir,
responde a lo que podemos considerar el Tipo de dato Abstracto Lista. Abreviadamente, se suele escribir para referirse a
los tipos de datos abstractos como TDA o TAD, segun otros autores. Asi, podemos decir que TObjectList mantendra una
lista de objetos de instancia, mientras que TComponentList hard lo propio con una lista de componentes (en la guia,
ademas, se matiza que dicha lista es gestionada en memoria, l6gico por cierto). De igual manera, TClassList tendra como
mision el mantenimiento de una lista de tipos de clases.

El segundo grupo lo forman los descendientes de TPersistent, que incorporan nuevas capacidades: por decirlo de
forma sencilla, la de almacenar y recuperar esa informacion; lo que se llama la Persistencia.. Métodos como Assign,
LoadFromFile, LoadFromStream, SaveToFile o SaveToStream, son caracteristicos de dicha capacidad y son incorporados
a los nuevos objetos. En este grupo nos encontramos por un lado tres objetos relacionados entre si: TCollection,
TOwnedCollection y TCollectionltem que mantienen una lista indexada de conjuntos de elementos.

Por otro lado, nos encontramos con TStringList, con capacidad para gestionar una lista de cadenas de caracteres. No
hace falta mencionar el papel que juega, junto con su antecesor, TStrings, en la manipulacion de cualquier texto en los
habituales controles.

Por ultimo, y ya para finalizar este primer grupo de objetos, nos encontramos frente a dos tipos de lista especiales.
Estamos hablando de TQueue y TStack (respectivamente con su descendiente). TQueue hace referencia a una estructura de
datos que se caracteriza precisamente por mantener una lista de objetos siguiendo el criterio FIFO (First In First Out), el
primero que entra es el primero que sale. Visualmente, lo podemos imaginar como una cola de personas que esperan un
autobus. Si nos pasamos de listillos e intentamos adelantar puestos en la misma, posiblemente se vea recriminada nuestra
conducta con insultos por parte de los presentes.

Otro matiz diferente alberga TStack: una estructura de datos que se caracteriza por mantener una lista de objetos bajo
el criterio LIFO (Last In First Out), el dltimo de entra es el primero que sale. Visualmente lo relacionamos con lo que
tradicionalmente se denomina Pila de datos. Nos es imposible acceder a cualquier dato interior de la lista si no es retirado
aquellos que han sido incorporados con posterioridad.

La segunda tarea que podemos relacionar con los objetos auxiliares es la de Modificacién del Registro de Windows y
de los ficheros INI. En el desarrollo de las aplicaciones, se hacen necesarios una serie de métodos, que nos permitan
almacenar informacién sobre la configuracién, sobre las preferencias del usuario, etc.. Con anterioridad a Windows 95,
dicha informacion quedaba almacenada en ficheros con extension INI. A partir de Windows 95, se hace uso del Registro de
Windows, como centro neuralgico de toda la informacion del sistema. Es por eso, que nos aparecen, dentro de los objetos
auxiliares pertenecientes a este apartado, aquellos objetos capaces de trabajar con dichos ficheros INI, como TlIniFile o
TMemlniFile, o bien aquellos que tan solo lo hacen con el registro, como TRegistry. Contamos ademas con un objeto
comun a ambos TRegistrylniFile, capaz de relacionarse tanto con el Registro de Windows como con los archivos de
extension INI. Podemos ver en la figura 2 dichos objetos y su estructura jerarquica. Ya en este nimero, os recuerdo que

Lo més basico de Delphi 3

Objetos auxiliares |

Carlos Conca, nos va a introducir en los ficheros INI, en la continuaciéon de un extraordinario articulo iniciado en el
nGmero anterior: ¢Ficheros de configuracion o Base de registros?.

Finalmente, podemos observar el tercer y Gltimo grupo de objetos auxiliares considerados por la Guia, en la Figura 3.
Todos son descendientes de la clase TStream, que implementa los métodos necesarios para acceder a los dispositivos de
almacenamiento. Serdn sus descendientes, los que particularizaran dicho acceso, ya sean archivos 0 memoria dindmica,

TRegistrylniFile &=

wf Hereda de
=P Ez cliente de

TReglniFile

Figura 2. Relacion jerarquica de los objetos relacionados con la configuracion:
almacenamiento lectura y modificacion de valores.

implementado los métodos
necesarios para la lectura y
escritura en los mismos, copia de
bytes o bien situarse en una
posicién determinada de dichos
flujos.

Ya tenemos una vision global del
concepto de Objeto Auxiliar y de
las tareas que éstos desempefian.

A lo largo de varios articulos, si
es que decidis seguir
soportandome, se profundizara en
aquellos detalles mas
significativos de cada uno de
estos grupos. Nos basaremos
principalmente en el cddigo
fuente que acompafia a nuestro
compilador. Y quizds aqui
podemos encontrar una primera
reflexién al hilo de todo esto, de
cierta importancia. (Existe un

codigo fuente y esta disponible para nosotros? Si sefior... Hay quien diré: -j\VVaya perogrullada!. jDejaremos de saber que

existe un codigo fuente!.

Posiblemente sea asi. Sin embargo haced una reflexion: Si analizéis muchas de las preguntas que se formulan en los
foros de programacion, la mayoria de ellas, podrian haber encontrado respuesta en las fuentes y sin embargo ahi estan las
preguntas. No hay una varita magica. Tan solo nos vale tener un buen conocimiento de la sintaxis de Object Pascal y

mucha paciencia. El resto lo dara la
experiencia y el deseo .de aprender un
poco mas cada dia, con humildad, con
la vista puesta en aquellos que van por
delante de nosotros, abriéndonos
camino.

Para ser justos, y puestos a decirlo
todo, también habrd que reconocer la
ausencia de comentarios en las fuentes,
que nos hacen considerarlas
ampliamente mejorables. Es frecuente
escuchar este comentario y como tal me
hago eco del mismo.

Retomemos: Segun sea la version
de nuestro compilador (Standard,
Profesional o Enterprise), vamos a
disponer de mayor o menor cédigo
fuente, l6gicamente.

Si nos referimos en concreto al
tema que nos ocupa, deberemos buscar
en el modulo Classes.pas, en donde se
implementan la mayoria de las clases

directorio “..\Delphi5\Source\”.

Lo més bésico de Delphi

TElobStream

THandle3tream
TFileStream

-,

=P Hereda de
= Es cliente de

TWin3ocketStream
TCustomblemorny
Streatn

Figura 3. Relacion jerarquica de los objetos relacionados con

los flujos de memoria.

que nos afectan, salvo los descendientes de TList y los descendientes de TOrderedList, que los encontraremos en el
modulo Contrns.pas. Estos modulos, junto al resto de cédigo fuente, se hayan repartidos en distintas carpetas en el

Objetos auxiliares |

TList: una lista de punteros.

Deciamos anteriormente, que la clase TList respondia a lo que se podia llamar el TDA Lista, pero lo dejamos en el

aire, sin entrar en mas detalles. Habria que preguntarnos que podemos entender por TDA o Tipo de Dato Abstracto:
Formalmente podemos entenderlo como una coleccién de valores definidos de forma Gnica mediante un tipo y un conjunto
de operaciones definidas sobre el mismo. Hablamos de la abstraccion de un tipo de datos, sobre el que somos capaces de
asignar determinadas capacidades innatas al mismo, que le son propias por naturaleza. En este &mbito, os invito a que
iniciéis la lectura del articulo de Mario Rodriguez, acerca de la libreria estandar STL y en el que se resefian estructuras de

datos comunes.

Asi consideramos que
una lista esta formada por una
coleccion homogénea de
elementos, punteros, que
gozan de ordenacion dentro de
ella, es decir que podemos
establecer un relacién de
orden entre dos elementos
cualquiera de la misma
(gracias a la existencia de un
indice), y sobre los que se

definen una serie de
operaciones u operadores
asociados. Respecto a un
elemento dado se nos
permitira:

- Insertar un elemento en una
lista de elementos.

- Obtener la posicion que
ocupa un elemento
determinado.

- Suprimir un elemento a
través de su posicién en la
lista.

- Vaciar el contenido de un
lista.

- Obtener el primer o el dltimo
elemento de la misma.

Nos introduciremos en
cada uno de estos operadores
al comentar la implementacion
que se sigue en la clase TList.

En el Listado 1 se nos
presenta la interfaz de la clase.
A la vista del mismo vya
podemos sacar las primeras
reflexiones iniciales.
Fijémonos en la declaracion
de tipos; en concreto en la
declaracién de PPointerList y

cons
Ma

type

PPoi nterList =
TPoi nterlList =

TL
TL

TL
pr

pr

pu

en

t

xLi stSi ze = Maxint div 16;

ATPoi nterList;

array[0..MaxLi st Si ze - 1] of Pointer;

i stSort Compare = function (ltenil, ItenR: Pointer): Integer;
istNotification = (I nAdded, |nExtracted, |nDeleted);

ist = class(TOhj ect)

ivate

FLi st: PPointerlList;

FCount : | nteger;

FCapacity: |nteger;

ot ect ed

function Get(Index: Integer): Pointer;

procedure Gow, virtual;

procedure Put(lndex: Integer; Item Pointer);
procedure Notify(Ptr: Pointer; Action: TListNotification); virtual;
procedure Set Capacity(NewCapacity: |nteger);
procedur e Set Count (NewCount: | nteger);
blic
destructor Destroy; override;
function Add(Item Pointer): |nteger;
procedure Cear; virtual;
procedure Del ete(l ndex: |nteger);
class procedure Error(const Msg: string; Data: |nteger);
overload; virtual;
class procedure Error(Msg: PResStringRec; Data: Integer); overload;
procedure Exchange(lndexl, |ndex2: I|nteger);

functi on Expand: TLi st;

function Extract(ltem Pointer): Pointer;
function First: Pointer;
function I ndexOF (Item Pointer): Integer;

procedure Insert(lndex: Integer; Item Pointer);
function Last: Pointer;

procedure Mve(Curlndex, New ndex: |nteger);
functi on Renove(ltem Pointer): |nteger;

procedur e Pack;

procedure Sort (Conpare: TLi st Sort Conpare);

property Capacity: Integer read FCapacity wite SetCapacity;
property Count: Integer read FCount wite SetCount;

property Itens[lndex: Integer]: Pointer read Get wite Put;
defaul t;

property List: PPointerList read FList;

d;

Listado 1. Interfaz de la clase TList.

de TPointerList El primero se declara como un puntero hacia una estructura del tipo TPointerList. Este Gltimo, como un

vector cerrado, cuyos elementos son punteros, sin especificacion de tipo de puntero, con un rango entre cero y
(MaxListSize —-1). Si nos vamos unas lineas mas arriba advertiremos que la constante MaxListSize toma el valor de

(MaxInt div 16), la divisién entera entre High(Integer), que es asi como se declara MaxInt en el mddulo system.pas, y 16.

Teniendo en cuenta el valor superior en el rango definido para los enteros, normalmente 2147483647 obtenemos un vector

cuyo rango esta entre 0y 134217726.

Hay que saber, que la implementacién del TDA Lista podria haber sido desarrollada, dada la naturaleza dinamica de

la misma (su longitud va a depender del nimero de elementos que la formen), mediante el uso del los TDA basados en

Lo mas basico de Delphi

Objetos auxiliares |

punteros: podriamos hablar de un Lista Enlazada o de una Lista Doble Enlazada. Los desarrolladores optaron por un Array
0 Matriz como medio para almacenar en memoria los elementos que la integran. ¢Entonces, tratindose de un vector
cerrado podemos pensar que la asignacion de memoria se realiza de forma estatica, en tiempo de compilacion?. No. La
asignacion de memoria serd dinamica, es decir, se crearan los mecanismos oportunos para la reserva de la memoria
necesaria en tiempo de ejecucion. Y eso se hara mediante un procedimiento definido en el mddulo System.pas:
ReallocMem. Este método toma como pardmetros un puntero al bloque de memoria que sera reasignado y el tamafio de la
misma en bytes. Analicemos esquematicamente como se produciran estas asignaciones dindmicas de memoria:

*Situacidn inicial: No tenemos todavia ningin puntero en nuestra lista.
FCount = 0 (todavia no hemos insertado elemento alguno)
FCapacity = 0 (todavia no se ha asignado memoria)

*Afadimos el primer elemento.
*Comprobamos FCount = FCapacity.

Puesto que FCapacity nos indica la cantidad de memoria reservada actualmente por FList, de ser igual al numero real
de elementos existentes, nos obligara a reservar nueva memoria. Una llamada al procedimiento Grow, un método virtual
que podra ser redefinido por los descendientes de TList, y desde este a SetCapacity(), seran suficientes.

*SetCapaciy comprueba que dicha capacidad esta dentro del rango del vector y de no ser asi nos serd comunicado
mediante una excepcion del tipo EListError. En el caso contrario, de ser correcta, y distinta de la actual, ejecuta la
siguiente rutina:

ReallocMem(FList, NewCapacity * SizeOf(Pointer))

*Y posteriormente se reasigna FCapacity con el valor actual.

Veamos la sintaxis de ReallocMem:

Procedure ReallocMem(var P: Pointer; Size: Integer);

Comentar que el procedimiento ReallocMem, segin los pardmetros recibidos en la llamada, actuara de una forma o de
otra. En la situacion inicial figurada, FList no estara asignado todavia, entregandonos como parametro Nil. Asimismo, Size
tendra valor mayor que 0,. En este caso, el procedimiento reservara un nuevo blogue de memoria del tamafio de dicho
entero.

¢Entonces FCount ha de coincidir con FCapacity? No. Aqui las apariencias nos engafian. FCapacity siempre habra de
ser mayor o igual a FCount y el motivo de ser asi, es tan solo por razones de eficiencia. Pensemos que de reservar
Unicamente memoria para el elemento que se va insertar en la lista produciriamos un continuo ir y venir, reservando y
liberando memoria en cada nueva insercién o borrado de un elemento de la lista. Para comprenderlo veamoslo en el
procedimiento TList.Grow, que sera el que controle el tamafio de la asignacion de memoria necesaria:

procedure TList.Grow;
var
Delta: Integer;
begin
If FCapacity > 64 then
Delta:= FCapacity div 4
else
If FCapacity > 8 then
Delta:= 16
else
Delta:= 4;
SetCapacity(FCapacity + Delta);
end;

Vemos que en la cantidad a reservar de memoria (FCapacity + Delta), Delta tomara un valor que tan solo depende de
la capacacidad actual de la lista. Para valores de FCapacity entre 0 y 8 tan solo se reservaran 4 bits adicionales. Para
valores entre 9 y 64 se reservaran 16 bits adicionales. La eficiencia en este caso la podemos considerar en el hecho de que,
a partir de FCapacity > 65, la cantidad de memoria reservada ird en funcién de la necesidades actuales, es decir, que para
mayor capacidad, reservaremos adicionalmente una cuarta parte de esta capacidad: a mayor demanda entonces mayor
reserva de memoria.

Lo més basico de Delphi 6

Objetos auxiliares |

El ciclo de destruccion de la memoria asociada a FList es similar y se realiza también mediante una Illamada a
ReallocMem pasando como parametro 0 en la llamada al método SetCapacity(). El destructor de la clase llamara al
método Clear, y este a su vez, a los métodos SetCount() y SetCapacity(), en ese orden.

SetCount() y SetCapacity() son declarados en la zona protegida de la clase TList. Ambos son el método de escritura
de dos propiedades respectivas: Count, que nos devuelve el numero actual de entradas del objeto lista y Capacity, que nos
devuelve el tamafio de la memoria asignada a FList. Como hemos dicho y explicado no tienen que ser iguales.

Podemos proceder entonces a analizar que es lo que hacen realmente estos métodos al ser llamados por distintos
valores. Estos valores los podemos resumir en dos: Para SetCount(), que el nuevo valor de FCount sea mayor que el
anterior, o bien que sea igual o menor, que es el segundo caso. Para SetCapacity tan solo distinguiremos que el valor de
FCapacity sea igual o distinto del actual.

Pero vedmoslo por separado:

procedure TList.SetCount(NewCount: Integer);
var
I: Integer;
begin
if (NewCount < 0) or (NewCount > MaxListSize) then
Error(@SListCountError, NewCount);
if NewCount > FCapacity then
SetCapacity(NewCount);
if NewCount > FCount then
FillChar(FList"FCount], (NewCount - FCount) * SizeOf(Pointer), 0)

else
for | := FCount - 1 downto NewCount do
delete(l);
FCount := NewCount;
end;

Lo primero que hara el procedimiento, sera comprobar que el nuevo valor, que se pasa como pardmetro en NewCount,
toma valores comprendido en el rango del vector: comprueba que no sea un valor negativo ni mayor que el rango superior,
de ser asi sera ejecutado el método Error(), generando una excepcion de tipo EListError con el mensaje 'List count out of
bounds '. Dicha excepcion la podremos capturar mediante los métodos habituales ‘try... except’ o ‘try...finally’. Los
distintos mensajes generados ante el tipo de excepcion EListError los podréis ver en el modulo ‘Consts.pas’.

En caso contrario seguimos la ejecucion de las rutinas. SetCapacity reservard memoria tan solo en el caso de que nos
encontremos ante un nuevo elemento afiadido (NewCount > FCapacity). Esto se hace previo a la evaluacién posterior
(NewCount > FCount), precisamente para prevenir el caso comentado, para evitar que se pueda incrementar el contador
FCount sin haber reservado memoria a tal efecto. En este punto llegamos al momento clave: En el caso de que nos
encontremos ante una nueva entrada, FillChar inicializara con ceros la memoria asignada entre FCount y NewCount. En
caso contrario, nos encontraremos con una salida o con un borrado definitivo (si NewCount fuera igual a 0), donde
procederemos a destruir cada una los elementos entre NewCount (el actual) y FCount —1. Ya para finalizar se reasigna el
nuevo valor de FCount.

procedure TList.SetCapacity(NewCapacity: Integer);
begin
if (NewCapacity < FCount) or (NewCapacity > MaxListSize) then
Error(@SListCapacityError, NewCapacity);
if NewCapacity <> FCapacity then
begin
ReallocMem(FList, NewCapacity * SizeOf(Pointer));
FCapacity := NewCapacity;
end;
end;

Al igual que el método anterior, previo a cualquier otra rutina, deberemos comprobar que el parametro NewCapacity,

de tipo Entero, esta dentro de los rango que admite el vector. Nuevamente de no ser asi generaremos la oportuna
Excepcion del tipo EListError, en este caso con el mensaje ‘List capacity out of bounds’.

Lo mas basico de Delphi 7

Objetos auxiliares |

Cuando evaluamos (NewCapacity <> FCapacity) nos aseguramos que realmente nos ha variado la capacidad previa
del vector, y solo en ese caso, procederemos a modificar la cantidad de memoria asignada a FList de acuerdo con el nuevo
tamafio de capacidad (NewCapacity). Ademas, en el caso particular de que NewCapacity tome el valor de 0, cuando
procedemos a destruir el objeto de la clase, ReallocMem liberara el bloque de memoria asignado a FList y asignara FList a
Nil.

Hasta ahora hemos estado analizando dos de las propiedades, hechas publicas por la clase, que son respectivamente
Capacity y Count. Hemos visto sus métodos de escritura y como se produce el ciclo de asignacion de memoria o de
liberacién de la misma. No hemos comentado, y lo haremos ahora, algin detalle sobre la propiedad List. Finalmente y
antes de pasar a los distintos métodos, haremos lo propio con la propiedad Items, que serd la que nos permita el acceso,
tanto en escritura como en lectura, a los valores de cada uno de los elementos de la lista.

La propiedad List es la que representa a la lista de punteros. Definida como un puntero a una estructura de tipo
TPointerList, tan solo nos permitira su lectura a través del campo privado FList. De tal forma que se protege precisamente
la manipulacién fuera de los métodos declarados.

TList: particularidades de la propiedad Items.

Abordamos una propiedad que nos puede parecer un poco especial y para la que aprovecharé este apartado que me
permite diferenciarla de las demas. Desde el punto de vista funcional podremos decir que en esta propiedad se almacenara
un puntero a uno de los elementos del array o vector FList. Es precisamente este puntero, dentro de una lista indexada, el
que nos permita resolver los valores de cada uno de los elementos del array.

Como propiedad pertenece a lo que se denominan Propiedades matriciales, propiedades indexadas cuyo indice, de
tipo entero, recorre la matriz, desde 0 hasta Count — 1.

Respecto a los métodos de lectura y de escritura en este tipo de propiedades, es decir, lo que se denominan
especificadores de acceso, se nos obligara a que dichos especificadores contengan métodos en lugar de campos. En el caso
de que hablemos del especificador de lectura éste lo hara a través de un funcién que tomara como parametros el mismo
numero y tipo de los parametros enumerados en la lista de indices de la propiedad. Acerca del especificador de escritura,
en este caso un procedimiento, se hara el mismo comentario anterior solo que en este caso no devolvera valor alguno.

En el caso que nos ocupa, la propiedad Items toma como especificador de lectura la funcion Put() y como
especificador de escritura el procedimiento Get().

Detengamonos en ellos unos minutos:

function TList.Get(Index: Integer): Pointer;
begin
if (Index < 0) or (Index >= FCount) then
Error(@SListIndexError, Index);
Result := FList*[Index];
end;

Como hemos comentado, la funcién Get ha de devolver el valor asociado a la propiedad matricial. También hemos
visto que en FList se van a ir almacenando punteros en el array. Podemos pensar que dichos punteros, apuntaran a ‘algo’,
ya sea un objeto, un entero, una estructura definida, en fin, lo que sea. Leemos linea a linea el codigo: “Si el entero Index
es menor que cero 0 mayor que FCount entonces lanzaras una excepcion del tipo EListError con el mensaje - List index out
of bounds -. (De no haber sucedido esto) devolveras a la propiedad Items[index] un puntero al elemento de indice Index
del array FList”.

procedure TList.Put(Index: Integer; Item: Pointer);
var
Temp: Pointer;
begin
if (Index < 0) or (Index >= FCount) then
Error(@SListIndexError, Index);
Temp := FList"[Index];
FList"Index] := Item;
if Temp <> nil then
Notify(Temp, InDeleted);
if Item <> nil then
Notify(ltem, InAdded);
end;

Lo més basico de Delphi 8

Objetos auxiliares |

Vamos a ver lo que sucede cuando modificamos el valor de la propiedad Items. VVolvemos a interpretar el cédigo: “ Si
el valor del indice Index — que es el pasado como parametro- es menor que 0 y mayor que FCount, entonces lanzaras una
excepcidn del tipo EListError con el mensaje comentado ya en el apartado anterior. (De no producirse esto) la variable de
tipo Pointer, Temp, apuntara al elemento de indice Index de la lista. Dicho elemento (cuyo tipo es Pointer) apuntara a la
variable Item, también de tipo Pointer pasada como parametro”.

De esa forma, al ejecutar el proceso de escritura de la propiedad Items lo que producimos es la modificacién de uno
de los elementos del vector lista, que toma el nuevo valor.

Otro detalle que nos puede pasar desapercibido es la llamada posterior al método virtual Notify. Veamos la
implementacion que hace la clase de dicho procedimiento:

procedure TList.Notify(Ptr: Pointer; Action: TListNotification);
begin
end;

Simplemente no hace nada. Es un método virtual que podra ser redefinido por sus descendientes, los cuales recibiran
como parametros un puntero y una variable de tipo enumerado, TListNotification, definida previamente en la declaracion
de tipos:

TListNotification = (InAdded, InExtracted, InDeleted);

Asi que, tan solo en el caso de que dicho puntero este asignado, se procedera a notificar que ha sido borrado o

afiadido, que son los dos casos que aqui se dan.

Operaciones asociadas al tipo lista.

Hemos comentado que existiran unas operaciones asociadas al TDA Lista. Vamos a reconocer en la implementacion
de la clase TList cuales procedimientos y funciones van a responder a dichos operadores u operaciones.

Insertar un elemento en una lista de elementos:

Podemos considerar que existen dos casos diferentes, en cuanto podemos tanto afiadir un elemento por el final de la
lista, como insertarlo entre medio de dos elementos cualquiera. En el segundo caso necesitaremos un parametro adicional,
que serd el indice que nos indica en que posicion deberiamos realizar la insercién. En términos de ir por casa, diremos que
al insertar un nuevo elemento, (no hace falta indicar que son punteros), deberiamos desplazar todos aquellos con un indice
superior a la posicion en la que se inserta el elemento nuevo, en una unidad del mismo valor que representa el puntero (4

bytes).

a-.Insertar un elemento por el final de la lista.

function TList. Add(Item: Pointer): Integer;
begin
Result := FCount;
if Result = FCapacity then
Grow;
FList"Result] := Item;
Inc(FCount);
if Item <> nil then
Notify(ltem, InAdded);
end;

Cada vez que procedemos a afiadir un elemento nuevo a la lista debemos comprobar que tenemos capacidad suficiente
para poder hacerlo, es decir, si hemos asignado memoria suficiente en una operacién anterior (Result = FCapacity) y en el
caso de que no sea asi, procederemos a ejecutar el procedimiento Grow, ya explicado, para que se aumente la cantidad de
memoria asignada. Asignaremos el nuevo puntero en nuestra lista, en la posicion FCount, e incrementaremos el valor de
FCount en una unidad. Debemos recordar que el primer elemento de nuestra lista no esta en la posicion 1 del vector, sino
gue empezamos a contar desde la posicion 0 hasta FCount — 1, por lo que la nueva posicion a afiadir vendria dada por
FCount.

Notificaremos la adicion del nuevo elemento para finalizar.

a-.Insertar un elemento en una posicién de la lista.

Lo més basico de Delphi 9

Objetos auxiliares |

procedure TList.Insert(Index: Integer; Item: Pointer);
begin
if (Index < 0) or (Index > FCount) then
Error(@SListIndexError, Index);
if FCount = FCapacity then
Grow;
if Index < FCount then
System.Move(FList*[Index], FList*[Index + 1],
(FCount - Index) * SizeOf(Pointer));
FList"Index] := Item;
Inc(FCount);
if Item <> nil then
Notify(ltem, InAdded);
end;

Al recibir como parametro el indice que nos define la posicion en la que debemos realizar la insercion del elemento,
comprobaremos en primer lugar, como siempre hacemos, que estamos en una posicion valida, dentro del rango del vector.
También como ya hemos repetido, de no ser asi lanzaremos una excepcion del tipo EListError.

Volvemos a comprobar si es necesaria la asignacion de nueva memoria y en el caso que dicha posicion sea menor que
FCount, ejecutaremos el procedimiento Move() del modulo ‘System.pas’.

¢Qué efecto producira la ejecucién de Move()? Imagino que ya lo veréis con cierta claridad. Hemos dicho que
necesitamos desplazar en una posicién el contenido del vector a partir de Index. El procedimiento Move copiara los
((FCount — Index)*SizeOf(Pointer)) bytes a partir de la posicién FList[Index + 1]. Antes de ejecutar este procedimiento,
debe ser siempre comprobado que existe suficiente memoria disponible para la copia, ya que de no hacerlo asi, nos
arriesgariamos a destruir posiciones de memoria contiguas, que no le pertenecen a la variable.

Toda vez que se ha realizado la transferencia tan solo nos quedara insertar en la posicién Index del array FList el
nuevo puntero e incrementar el contador FCount. Asimismo, procederemos a lanzar la notificacion de que ha sido afiadido
un nuevo elemento en la lista.

Obtener la posicién que ocupa un elemento de la lista:

En ocasiones necesitaremos obtener la posicién que ocupa un elemento determinado. Para resolver este problema
disponemos de la funcion IndexOf, que recibira como pardmetros un puntero y nos devolvera su posicion en la lista

function TList.IndexOf(Item: Pointer): Integer;
begin
Result := 0;
while (Result < FCount) and (FList*[Result] <> Item) do
Inc(Result);
if Result = FCount then
Result := -1,
end;

Intuitivamente lo vemos: Asignamos a cero la posicién inicial del indice que nos recorrera el vector, en este caso, es el
resultado que nos ha de devolver la funcién. Iniciamos un bucle con el que recorreremos el array mientras se cumpla dos
condiciones: que no lleguemos al final del indice del vector, a nuestros efectos FCount, y que el puntero que entregamos
como paradmetro sea distinto del actual, el que tiene como indice a Result. El resto es facil de imaginar. De haber cumplido
FList"Result] = Item obtendriamos directamente el final de bucle y el retorno correcto de la funcién. Si no es asi, el bucle
se vera finalizado al cumplir (Result = FCount) por lo que la funcién devolverad -1, indicandonos que la bisqueda se ha
realizado sin éxito.

Suprimir un elemento a través de la posicién en la lista:

Existen dos funciones muy similares. La diferencia es tan solo de matiz. Agradezco a Mario Rodriguez y a Tavo
Ibaceta su paciencia y sus consejos para que os lo pueda explicar con propiedad. Veamos:

Lo més basico de Delphi 10

Objetos auxiliares |

En los dos casos, la llamada a ambas funciones va a producir la eliminacion del elemento Item de la lista y también en
los dos casos se va a partir de una bisqueda inicial mediante el método IndexOf(), comentado anteriormente. EI matiz lo
tenemos en lo que hace la funcién una vez que ha encontrado dicho elemento (el puntero). En el primer caso, simplemente
no se hace nada y directamente llamamos al método Delete() que eliminara el puntero de nuestra lista. Observar el valor
de devolucion: Integer. Lo que nos devuelve la funcién es la posicion del elemento eliminado.

function TList.Remove(ltem: Pointer): Integer;
begin
Result := IndexOf(ltem);
if Result >= 0 then
Delete(Result);
end;

En el segundo caso asistimos a una asignacion previa al borrado: (Result := Item). Estamos devolviendo a través de la
funcién un puntero al elemento, y seguidamente, con (FList*[I] := nil) nos aseguramos que en la llamada a Delete() tan
solo se elimine el elemento de la lista y no el objeto al que apunta dicho puntero (ya que dicho puntero ya no apunta hacia
ningun otro objeto). De esa forma, se extrae el elemento de la lista pero no se destruye.

function TList.Extract(ltem: Pointer): Pointer;
var
I: Integer;
begin
Result := nil;
I := IndexOf(ltem);
if 1 >= 0 then
begin
Result := Item;
FListMI1] := nil;
Delete(l);
Notify(Result, InExtracted);
end;
end;

procedure TList.Delete(Index: Integer);
var
Temp: Pointer;
begin
if (Index < 0) or (Index >= FCount) then
Error(@SListIndexError, Index);
Temp := Items[Index];
Dec(FCount);
if Index < FCount then
System.Move(FList*[Index + 1], FList*[Index],
(FCount - Index) * SizeOf(Pointer));
if Temp <> nil then
Notify(Temp, InDeleted);
end;

Comentaré tan solo la linea que me parece mas significativa. Mas, cuanto parte de lo ya comentado con anterioridad
es aplicable al procedimiento. En el caso de que nos encontremos en una posicién (Index < FCount), el procedimiento
Move, efectuara una copia del contenido desde la posicion [Index + 1] hasta [FCount], en la posicion actual [Index]. Se
copiaran, como ya comentamos en las operaciones de Insercion, ((FCount - Index) * SizeOf(Pointer)) bytes..

Vaciar el contenido de la lista:

Pienso que no hace falta extenderme en este procedimiento pues ya se ha comentado con anterioridad.

procedure TList.Clear;
begin

Lo mas basico de Delphi 11

Objetos Auxiliares |

SetCount(0);
SetCapacity(0);
end,;

Obtener el primer o el Gltimo elemento:

function TList.First: Pointer;
begin

Result ;= Get(0);
end;

function TList.Last: Pointer;
begin

Result ;= Get(FCount - 1);
end;

En el primer caso se nos devolvera el puntero FList*[0], (el primer elemento de la lista). En el segundo, el puntero
FList*"[FCount-1], (el altimo elemento de la lista).

Otras operaciones adicionales:

Ya para finalizar, comentaremos algunos de los métodos que hace publicos la clase TList y que no he incluido dentro
de las operaciones mas elementales. En principio por que se pueden expresar como una composicion de las anteriores, que
es el caso del procedimiento Move, por ejemplo, que producira el traslado de un elemento en una posicion de la lista,
hacia otra posicion de la misma en la que se insertara. Vemos pues, que es en definitiva, la aplicacion de operaciones mas
elementales, tales como Delete() e Insert().

procedure TList.Move(Curindex, NewlIndex: Integer);
var
Item: Pointer;
begin
if Curlndex <> Newlndex then
begin
if (NewlIndex < 0) or (Newlndex >= FCount) then
Error(@SListIndexError, Newlndex);
Item := Get(Curlndex);
FList"Curindex] := nil;
Delete(Curlndex);
Insert(Newlndex, nil);
FList"[NewlIndex] := Item;
end;
end;

Exchange() , en cambio, es una sucesién de asignaciones por las que, mediante una variable referenciada (Item) del
mismo tipo, intercambiaremos las posiciones de dos elementos de la lista. Como en ocasiones anteriores, antes de proceder
a las asignaciones, deberemos comprobar que dichos indices, Index1 e Index2 toman valores pertenecientes al rango
definido por el numero de elementos (FCount). Toda vez que se ha comprobado que esto es asi, se procederan a
intercambiar el contenido de las posiciones de memoria.

procedure TList.Exchange(Index1, Index2: Integer);
var
Item: Pointer;
begin
if (Index1 < 0) or (Index1 >= FCount) then
Error(@SListIndexError, Index1);
if (Index2 < 0) or (Index2 >= FCount) then
Error(@SListIndexError, Index2);
Item := FList*[Index1];
FList"Index1] := FList*[Index2];

Lo més bésico de Delphi Sintes 12

Objetos auxiliares |

FList"Index2] := Item;
end,;

Cabe pensar en que momentos puede ser utilizado este procedimiento con el que acabamos este primer articulo. La
llamada al procedimiento Pack eliminara aquellos elementos del vector que no estan asignados. Es una rutina de limpieza
del array, por decirlo de alguna manera sencilla.

procedure TList.Pack;
var

I: Integer;
begin

for 1 := FCount - 1 downto 0 do

if Items[1] = nil then
Delete(l);

end;

Lo que nos espera...

En el préximo articulo, abordaremos una operacion comun a las clases TStringList y TList: el método de ordenacion
rapida o Quicksort, implementado en el procedimiento Sort(). Esto nos permitira introducir algunos conceptos nuevos,
tales como el coste de un algoritmo, o su naturaleza recursiva. Apuntaremos algunos detalles que nos resulten de interés
sobre los descendientes de la clase TList y nos centraremos en las clases TStrings y TStringList, acompafiando esta parte
mas tedrica con algln ejemplo practico que nos ayude a utilizar sus métodos.

Un saludo y hasta el proximo namero... ;-)

Bibliografia:

Me parece de justicia, nombrar aquellas fuentes en las que me he apoyado a la hora de documentarme, y que me
serviran de guia en éste y sucesivos articulos:

Estructuras de Datos y Algoritmos, de R. Hernandez, J.C. Lazaro, Raquel Dormido y Salvador Ros

Guia del Desarrollador de la empresa Borland Inprise.

Programacién con Delphi 5 de Francisco Charte

Disefio de Programas: Formalismo y Abstraccion, de Ricardo Pefia Mari.

Ademas, si queréis ampliar vuestros conocimientos sobre tipo abstractos de datos y algoritmos, el libro del profesor

Luis Joyanes Aguilar e Ignacio Zahonero Martinez, “Estructura de datos, Algoritmos, abstraccion y objetos” de la Editorial
McGrawHill. Uno de los libros mas completos hasta la fecha, ilustrado con numerosos ejemplos en Pascal.

Lo més basico de Delphi 13

