Objetos auxiliares - Salvador Jover

mailto:s.jover@wanadoo.es

Objetos Auxiliares Il

Retomamos ahora, la pequefia aventura iniciada en
nuestra cita anterior, renovando ilusiones, con la
esperanza de seguir avanzando un poco mas dia a

dia... Adelante pues.

A lo largo del articulo anterior, profundizamos en el concepto de Objeto Auxiliar, obteniendo una vision
global de todos aguellos objetos, a los que relaciondbamos directa o indirectamente con este concepto.
Nombrabamos y describiamos cada uno de ellos, y detuvimos, finalmente, nuestros pasos ante la clase TList.

Como recordareis, y si no fuese asi, 0s ruego sea releida la parte primera de esta serie, haciamos una
pequefia introduccion a los tipos de datos abstractos, TDA o TAD segun autores, y relaciondbamos nuestra
clase TList con un tipo de dato de esta naturaleza. Asimismo, y siguiendo esta filosofia, analizadbamos uno por
uno los distintos métodos u operaciones, que dotaban a la clase de una funcionalidad. Podiamos ver, como eran
insertados elementos a nuestra lista, como eran borrados, extraidos, 0 movidos a una nueva posicion. En ese
afan nos quedamos. Nos despedimos y se dejo escrita una promesa de retomar en este punto la clase TList para
abordar el método que nos falta, y que ciertamente es requerido: Un método de ordenacion: el algoritmo de
QuickSort de C.A.R. Hoare.

Estaba a punto de dar por finalizada nuestra clase TList. Y yo no podia evitar preguntarme: ¢Habra
variado algo la clase TList con la proxima aparicion de Delphi 6? No tenia respuestas... Asi que, ni corto ni
perezoso, decidi izar las velas de mi barcaza y adentrarme mar adentro, en busca de respuestas, navegando sin
direccion....

Metaforicamente se inici6 un viaje que hoy os resumo. Un viaje que ha durado varias semanas en busca de
informacién sobre TList... Efectivamente, las preguntas han encontrado algunas respuestas que vamos a
compartir. Si. La clase TList se ha visto ampliada por un método, cuyo nombre ya nos es familiar: el método
Assign(). Con él, los programadores de Borland han ampliado la funcionalidad de la clase dotandola de la
capacidad de poder operar con dos listas de punteros. Quedaran a nuestro alcance operaciones mas tipicas de
conjuntos, como puede ser la Unidn o la Interseccion de los elementos de las lista.

Pero no nos adelantemos Y veamos por partes esta nueva aventura que comienza.

Sort 0 el método de ordenacion rapida.

Hacemos un alto en el camino. Vamos a introducir algunas ideas que nos hardn comprender el algoritmo
implementado en el método Sort, para lo cual, tenemos que abordar, eso si, muy superficialmente, conceptos
mas proximos a la programacion clésica.

Lo més bésico de Delphi

mailto:dejover@eresmas.com

Objetos Auxiliares Il - salvador Jover

Recursividad, Algoritmo, eficiencia... son algunas palabras claves con un nexo en comdn: la necesidad de
buscar soluciones a los problemas planteados. Sin necesidad de introducir definiciones formales, lejos de
convertir este texto en una copia de cualquier manual universitario, diremos que un algoritmo no es mas que el
conjunto de pasos que son necesarios para dar respuesta a un determinado problema. Es una definicién
informal, hecha desde el sentido comdn.

También desde el sentido comin, y en esa necesidad de dar solucion a los problemas, encontraremos dos
enfoques distintos segun la existencia o no de recursividad en su naturaleza. Asi podemos hacer una distincién
entre Algoritmos con un disefio recursivo y aquellos cuyo disefio se nos presenta en términos de iteracion, o
iterativos.

Partiremos de un ejemplo basico que nos permita llenar de contenido los conceptos planteados.
Supongamos que deseamos crear una funcién que nos calcule la potencia enésima de un entero cualquiera. En
ambos casos, nuestra funcion recibird como parametros los valores correspondientes a la base y al exponente
de dicha potencia, y habra de devolver como valor otro entero resultante de dicho calculo deseado.

Veamos la implementacion:
CALCULO DE LA POTENCI A ENESI MA:

ALGORI TMO | TERATI VO
function potencia_enesima_iter(base, exponente: integer): integer;

var
cont ador: integer;
begin

Resul t: = 1;

for contador:= 0 to exponente - 1 do
Result:= Result * base;
end;

ALGORI TMO RECURSI VO
function potencia_enesi ma_rec(base, exponente: integer): integer;
begin
case exponente of
0: Result:=1; // solucidén o caso trivial
el se
Result: = base * potencia_enesi ma_rec(base, exponente - 1);
end;
end;

Si nos centramos en el primer algoritmo planteado, vemos como para resolver dicho problema se hace
necesario encontrar otro, de distinta naturaleza, supuestamente mas sencilla, que pueda ser resuelto en
términos de unos datos distintos y mas pequefios. En el ejemplo hemos convertido nuestro problema original,
elevar a una potencia, en otro cuya naturaleza es distinta: multiplicar dos enteros. De la repeticion de dicho
problema, un nimero concreto de veces obtenemos la solucion deseada.

Nn-veces
A"SAXAXAX....... X A

Por el contrario, en nuestro segundo algoritmo, nos preguntaremos si es posible resolver nuestro problema
original, partiendo del supuesto de que dicho problema, ya se haya resuelto para otros datos mas sencillos,
denominados solucion trivial del algoritmo. Dicha premisa establece la busqueda de una relacién de
recurrencia con respecto al problema original, mediante unos datos mas pequefios. Como podéis ver,
sucesivamente sera invocada la funcidn potencia_enesima_rec, cuyo parametro exponente seré reducido en
una unidad a cada nueva llamada hasta alcanzar la solucion trivial.

Lo més bésico de Delphi

Objetos Auxiliares Il - salvador Jover

A" =FaxAMl
AML= A x A2
A0= l ''''''''''' [Solucién trivial]

¢ Eficiencia...?

En este punto, y una vez que podemos entender algo tan basico, como que pueden existir maltiples
algoritmos para la resolucion de un mismo problema, nos daremos cuenta de podemos establecer criterios que
permitan afirmar que un algoritmo es mas eficiente que otro. Para estos casos, por convenio, se adoptan
distintos criterios en aras de medir, de forma homogénea, todas las posibles soluciones, independientemente
del compilador o del procesador en el que sean ejecutados, por enumerar dos razones que pueden modificar
nuestra percepcion de eficiencia de los mismos. Este criterio viene a denominarse Criterio Asintético. También
por convenio, se suele considerar la eficiencia del algoritmo en el caso peor, aunque en algunos caso pueda
tomarse como referencia el promedio obtenido.

Una forma de medir la eficiencia de un algoritmo es basicamente contar el nimero de instrucciones que se
ejecutan en el mismo. Es decir, si somos capaces de hallar este valor, si establecemos unos criterios que nos
permitan contar ese nimero de instrucciones, hallaremos también una relacién entre el tamafo del problemay
la eficiencia del algoritmo. Ldgicamente, cualquier comparacion, necesita unas coordenadas sobre las que
poder tomar una referencia y obtener una medida. Incorporamos aqui, y para estos ejemplos, la abscisa
temporal, o dicho de otra forma, el tiempo de ejecucion del algoritmo. En otros problemas, quizas nuestra
abscisa de referencia no pueda ser temporal,, sino espacial, y lleguemos a tomar como base la ocupacion de
memoria. En definitiva, necesitamos una referencia sobre la que hacer una medida de comparacion.

Entramos de lleno en la eficiencia. Decir que un algoritmo pertenece a un orden de complejidad de “n” o
lineal, es lo mismo que decir que crece en la misma proporcion, el tiempo de ejecucidn respecto al tamafio del
problema. Existen, por tanto, distintos ordenes de complejidad segin la naturaleza del problema planteado,
siendo los mas usuales: 2" u orden exponencial, 'n*, 'n* o cuadratica, 'nlogn’, 'n' o lineal. Y aqui llegamos a
una reflexion: ¢para todo problema planteado, nuestro algoritmo va a resolverlo? Y empezamos a comprender
gue no. Para ordenes de complejidad iguales o superiores a la exponencial, un pequefio incremento en el
tamafio del problema generard un incremento inabordable en el tiempo de ejecucion... Asi pues, es importante
siempre preguntarse si el algoritmo que hemos disefiado, es mejorable en términos de eficiencia.

¢Que no lo comprendes...? Ummmm.... A ver como os lo explico: Suponed que tenemos que hacer una
operacion con un vector ordenado de enteros. Por ejemplo, buscar un elemento del vector y devolver verdadero
en caso de hallar dicho elemento. Supongamos que recorremos el vector mediante un bucle y al final del
mismo, después de recorrer todos y cada uno de los elementos, devolvemos verdadero o falso segin esté o no
dicho elemento. Suponemos ademas que tardamos un tiempo X en resolver dicha funcion y que nuestro
algoritmo tiene un orden de complejidad de 'n' o lineal. ;{No sera también cierto, que si duplicamos el nimero
de elementos del vector, es decir, duplicamos el tamafio del problema, se duplicard también el tiempo en
resolverlo? Podemos de igual manera, plantear algoritmos que respondan a los distintos ordenes de
complejidad planteados, pero desgraciadamente, es algo que se sale del alcance de este articulo. No obstante, si
gue vamos a establecer al menos una jerarquia de 6rdenes de complejidad, de mayor a menor grado de
eficiencia:

logn- n - nlogn - n2- n3 - 2" - n!

Lo més bésico de Delphi

Objetos Auxiliares Il - salvador Jover

TIEMPO

Para comprenderlo mejor, la figura 1 os puede
dar una idea de las distintas tasas de crecimientos

Vemos pues, como la eficiencia es una
medida relativa que relaciona magnitudes. .

No seas pesado y vamos a lo que
vamos...

Llegado este punto, podemos introducir la
implementacion hecha por el método Sort de la
clase TList. Para empezar veremos como se
implementa el método:

procedure TLi st. Sort (Conpare

TAMANO TLi st Sor t Conrpar e) ;
begi n
if (FList <> nil) and (Count > 0) then
Figura 1. Gréfica de Tasas de Crecimiento Qui ckSort (FList, 0, Count - 1,
Conpare) ;
end;

Posiblemente os haya pasado como a mi. Nos gusta ver las cosas evidentes y mientras vamos analizando el
codigo, identificando cada uno de los pardmetros, tipos y variables, nos detenemos en Compare. Pero, ;qué es
Compare?. Aqui ha saltado la primera voz de alarma. Nos hemos encontrado algo que a primera vista nos
resulta especial. En una primera aproximacion podemos percibir que nos encontramos frente a un tipo de dato
definido y rapidamente, nos localizamos la linea en la que se declara TlistSortCompare.

Ahhh... Esto est4 un poco mas claro:

TlistSortConpare = function (Itenl, ItenR: Pointer): Integer;

Abrimos el manual de Object Pascal que nos facilita Borland, y leemos literalmente:

“Si se tonma | a cabecera de un procedimento o una funcién y se elimna el identificador que
va a continuaci 6n de | as pal abras procedure o function, |0 que queda es el nonbre de un
ti po de procedi m ento. Estos nonbres de tipo pueden enplearse directanente en |as

decl araci ones de vari abl es. ..

... Todas estas variables son punteros a procedinientos, es decir, punteros a |la direccion
de un procedinmiento o una funcién...”

iYa esta claro...! Nuestro pardmetro va a ser un puntero a la direccion de una funcion. Pero ¢yo no veo por
ningun lado la funcidn?. ¢ No deberian facilitarme una?

Pero claro, algunas cosas no llegan a ser tan evidentes. Para empezar, no estamos teniendo en cuenta que
trabajamos con punteros, porque, claro esta, ¢hacia donde apunta el puntero?. Averiguaremos posteriormente
que la funcion Compare tiene una misién muy limitada: decirnos si dos valores son iguales, mayor el primero
respecto al segundo o viceversa. Pero como parametros han de recibir punteros por definicién. Por lo que
¢como se puede saber entonces, a que estructura va apuntar el puntero si no Somos nosotros mismos, que
hemos creado la lista?

Lo més bésico de Delphi

Objetos Auxiliares Il - Salvador Jover

Si observais atentamente el listado 1, donde aparece un ejemplo de utilizacion del método Sort, hemos
implementado la funcion que espera como pardmetro nuestro método:

function Conpara(a, b: Pointer): Integer;
begin

Result:= PInteger(a)™ - Pinteger(b)”;
end;

y posteriormente, en el cuerpo del procedimiento, la hemos invocado, entregando la direccion de dicha
funcién. Aqui tenemos un ejemplo del uso del operador '@' que nos devuelve una direccion.

Li sta. Sort (@onpar a) ;

Adentrandonos propiamente en la implementacion advertimos que previo a invocar el procedimiento
QuickSort, se ha de comprobar gue realmente esta asignada nuestra lista y que contiene al menos un elemento.
Cumplidas esas condiciones se invocara dicho procedimiento.

Y hemos llegado al fin a nuestro QuickSort.

procedure TFornil. Buttonld i ck(Sender: TObject);
{Reci bi nros conp paranetros dos punteros, por |o que debenps resol verlos para obtener |os
valores a los que apuntan y asi poder operar con ellos. Este proceso obliga a extremar |a
precauci 6n de que real mente sean punteros del tipo apropi ado, que puede echar por tierra
nuestro codi go}

function Conpara(a, b: Pointer): Integer;

begin

Result:= PInteger(a)™ - Pinteger(b)”*;
end;

var
Li sta: TLi st;
P: "l nteger;
I ndice: Integer;
begi n

Lista:= TList.Create;//Creanps la lista para |lo cual |lamanpbs a Create de TList.

try
New(P); //reservanps nenoria para nuestro puntero
Pr.= 27; |/ procedenps a |l a asignaci 6n de un valor entero
Li sta. Add(P); // afadinbs el puntero a nuestra lista

New(P) /'l repetinos el proceso anterior para cada valor de la lista
/\ -

Li st a. Add(P);

Nem(P);
Pr:i=9;
Li st a. Add(P);

New(P)

/_

Li st a. Add(P);
New(P)

A

Li st a. Add(P);
New(P) ;

Lo més bésico de Delphi

Objetos Auxiliares Il - Salvador Jover

pr: = 25;
Li sta. Add(P);

{Toda vez que tenenps nuestra |ista preparada, podenps proceder a ordenarla. Tal y cono
comentanps a lo largo del articul o, pasarenps conp paranmetro un puntero a |la direcci 6n de
una funci 6n, cuya nision sera sinplenente decir a A es nmayor, nenor o igual que B. De esa
forma henos sido nosotros | os que henps establ ecido el criterio de ordenaci 6n}

Li sta. Sort (@onpar a) ;

{Este ejenplo se vera mas claranmente desde el cdédigo fuente que se aconpafia, ya que he
i ncorporado 6 conponentes de la clase TEdit para reflejar el estado anterior de la lista
y estos seis mAs que son asi gnados a continuaci 6n para ver el estado final en que queda.}
p: = Lista.ltens[O0];
editl.text:= IntToStr(p");

p: = Lista.ltenms[1];
edit2.text:= IntToStr(p”);

p: = Lista.ltenms[2];
edit3.text:= IntToStr(p”);

p:= Lista.ltens[3];
edit4.text:= IntToStr(p”);

p:= Lista.ltens[4];
edit5.text:= IntToStr(p”);

p:= Lista.ltens[5];
edit6.text:= IntToStr(p”");

/lrecorrenos la lista para poder obtener |a direccion del contenido de cada puntero
for Indice:= 0 to Lista.Count - 1 do
begin
p:= Lista.ltens[Indice]; // Apuntanps con el puntero p a cada elenmento de la lista
di spose(p); // liberanpbs la nmenoria a |a que apunta p

end;
finally
Lista. Free; // finalnente procedenps a |iberar nuestra lista
end;
end;

Listado 1. Ejenplo de invocaci 6n al nétodo Sort.

Cualquier estudiante de informatica, en sus primeros afios universitarios, se entregara al aprendizaje de las
estructuras de datos mas habituales, al estudio de los algoritmos y deméas temas béasicos en la programacion. El
estudio del Algoritmo de QuickSort de C.A.R. Hoare es un paso obligado en dicho aprendizaje, entre otros
motivos por ser un algoritmo con un excelente orden de complejidad (nlogn), siempre que se den las
condiciones requeridas. Frente a algoritmos ineficaces como el de la Burbuja, éste algoritmo recursivo obtiene
un rendimiento como ya se ha comentado excelente.

Dentro de la clasificacion habitual, pertenece al grupo de algoritmos que ordenan por particion. Es decir,
estd basado en la estrategia de disefio conocida por Divide y Venceras, donde se elige un elemento del vector o
lista que hara las veces de pivote. Sobre este elemento, y establecidos un tope por la derecha y otro por la
izquierda, nos iremos acercando al pivote, intercambiando aquellos elementos mayores que el pivote y que
estan a la izquierda del mismo, con aquellos que son menores y se sitlan a la derecha del pivote. Toda vez que
se cruzan los indices que controlan ese acercamiento, sera invocado recursivamente el procedimiento dos

Lo més bésico de Delphi

Objetos Auxiliares Il - salvador Jover

veces, una para el blogue a la izquierda incluyendo el pivote, y otra para el bloque ordenado a la derecha del
pivote, iniciandose de nuevo el proceso de intercambio para estos dos huevos procesos.

De existir, dicho procedimiento seria algo asi:

procedure QuickSort(SortList: PPointerList; L, R Integer; SConpare: TListSortConpare);
var

I, J: Integer;

P, T: Pointer;

begin
l:=1L;
J:= R
P:= SortList* (L+R) shr 1];
r epeat
whi | e SConpare(SortList”[1], P) < 0 do
Inc(l);
whi | e SConpare(SortList”[J], P) > 0 do
Dec(J);
if 1 <= J then
begin
T := SortList™I];
SortList™ 1] := SortList”[J];
SortList™[J] : =T,
Inc(l);
Dec(J);
end;
until I > J;

if L <J then
Qui ckSort(SortList, L, J, Sconpare); // prinera invocacion recursiva
if | < Rthen
Qui ckSort(SortList, I, R Sconpare); // segunda invocaci 6n recursiva
end;

Digo de existir, porque realmente NO existe. El algoritmo implementado en QuickSort es tal y como
aparece a continuacion:

procedure QuickSort(SortList: PPointerList; L, R Integer;
SConpar e: TLi st Sort Conpare);

var
I, J: Integer;
P, T: Pointer;

begin
repea
| :=L;
J: = R
P:= SortList? (L + R shr 1];

r epeat /1 iteraci6n que sustituye a |la segunda invocaci én recursiva
whi | e SConpare(SortList”[1], P) < 0 do
Inc(l);
whi | e SConpare(SortList”[J], P) > 0 do
Dec(J);
if 1 <=J then
begin
T := SortList™I];
SortList™[1] SortList™J];
Sort Li st~ J] T;
Inc(l);
Dec(J);
end;
until I > J;

Lo més bésico de Delphi

Objetos Auxiliares Il - Salvador Jover

if L <J then
Qui ckSort(SortList, L, J, Sconpare); // prinera invocacion recursiva
L:=1;
until | >= R
end;

Y aqui llegamos al primer interrogante: ¢en qué se diferencia la implementacion hecha por los
programadores de Borland y la propuesta originalmente por Hoare en su algoritmo original? ¢por qué razon ha
sido modificado?.

Analizando ambos algoritmos.

Vamos a intentar resolver estos interrogantes. Podéis seguir con mayor claridad el desarrollo, ojeando el
ejemplo que he introducido en la figura 2 y que compara una hipotética ordenacion de una lista de 6
elementos. Si bien no es un ejemplo demasiado representativo, al menos, puede dar una idea visual de las
diferencias entre los dos algoritmos.

En los dos casos, prescindiendo de la declaracion de las variables y del bucle repeat until del segundo, lo
primero a hacer es obtener los valores de los indices de recorrido tanto por la derecha como por la izquierda.
Estos valores, pasados como parametros y respectivamente 0 y Count - 1, es decir, el primer y ultimo elemento
de la lista, nos serviran para poder calcular el pivote sobre el que podremos hacer los intercambios. A primera
vista, podriamos pensar que dichos valores carecen de importancia y sin embargo, no es asi. Precisamente, la
obtencion de un orden de complejidad de 'nlogn' viene dado de la obtencion de un valor medio en nuestro
vector o lista. De no ser asi y si supuestamente tomasemos como pivote un extremo de la lista, nuestra
eficiencia se veria reducida y se obtendria asi un orden de complejidad cuadrética, a todas luces ineficaz. Para
remediar esto, se opta por obtener el elemento central de nuestra lista.

Queda asi justificada la eleccién de la siguiente asignacion: P:= SortList*[(L+R) shr 1], en donde lo que
realmente obtenemos es el termino central. Como ya sabéis, un desplazamiento bit a bit hacia la derecha (shr)
lo que realmente producird es un division por 2 del dividendo (L + R), ya que estamos operando en base 2 o
binario. Es decir, la variable de tipo puntero P tomard como valor el contenido el termino central de nuestra
lista.

Toda vez que se han fijado los valores de los indices y el pivote, podemos iniciar el proceso de
intercambio. Este blogue que delimita dicho proceso viene marcado por el segundo REPEAT hasta que se
cumpla la condicion (1 > J), que obligara a que se crucen dichos indices en su recorrido a través de la lista. En
dicho recorrido se seguiran los siguientes pasos:

whil e SConpare(SortList®[I1], P) <0 do Inc(l);

Comparamos el valor de la lista en la posicion [I] con nuestro pivote. Recordemos que el indice | nos
recorria el vector partiendo de la posicion mas a la izquierda (L). Asi pues, mientras el valor evaluado sea
menor que el pivote, incrementamos I, en busca de un elemento que sea mayor, para poder proceder a
ordenarlo posteriormente. En el momento en que localicemos dicho valor nos saldremos del bucle While, para
iniciar el proceso de busqueda a la derecha de la lista.

whi |l e SConpare(SortList~[J], P) > 0 do Dec(J);

Comparamos el valor de la lista en la posicion [J] con nuestro pivote. Comentamos en paginas anteriores
que al invocar el método Sort, entregdbamos como parametro la direccion de una funcién. Aqui vemos que se

Lo més bésico de Delphi

Objetos Auxiliares Il - Salvador Jover

invoca a dicha funcion pasando como parametros de comparacion los valores que nos interesan. Esto que ahora
se comenta, es valido para el While anterior. Solamente en el caso de que el valor en el elemento J de nuestra
lista, sea mayor que el valor del pivote, procederemos a decrementar J.

if I <=J then

begin
T := SortList™I];
SortList”[1] SortList~r[J];
Sort Li st~[J] T;
Inc(l);
Dec(J);

end;

Funcionamiento de QuiclcSort immplementado en TList ¥ el tradicional:

[SIMBOLOGIA A)
Valorde Lo R ‘].E]ementu qu.em]
Elemento que dehe sex ~ Intercambia
. intercamhiado con ;ﬁ”ﬁ
= (L+H !
Pivote = (L+R) /2 respecto al pivote b* A .z
elejido Mo tenemos en cuenta
i Elemenio ordenado hasta posteriormente.

Figura 2 - Desarrollo visual de ambos algoritmos con un ejemplo

Como condicion: que | no sea mayor que J. En caso de ser esto cierto, se proceden a intercambiar el
contenido en dichas posiciones, para la cual, se ha referenciado un puntero mas, (T), que almacenara el valor
de uno de los elementos, permitiendo hacer el intercambio. T vale I, | vale J, J vale T y T ya no nos interesa,
pues a cumplido su misién. Como ya se ha efectuado dicho cambio, se procede a incrementar | y decrementar J
para seguir buscando nuevos elementos que se puedan intercambiar.

Lo més bésico de Delphi

Objetos Auxiliares Il - Salvador Jover

Until I >

Finalmente la condicion 'until' nos mantiene en el bucle hasta que se cruzan los indices 'y J.

Y ahora viene la parte menos intuitiva. Hasta el momento, nuestro algoritmo tan solo sabe ordenar los
elementos de una lista sobre un pivote elegido. Intercambia todos los elementos que hace falta hasta dejar a la
izquierda del pivote, aquellos elemento menores que el, y a su derecha, todos los mayores. Si os fijais en el
paso 'c' del primer y segundo algoritmo de la figura 1, los elementos 6, 5 y 8 cumplen ser menores que el
pivote, pero sin embargo, todavia no estan ordenados.

Aqui, y por esa misma razon, intervienen las invocaciones recursivas que precisamente, su mision sera
terminar de ordenar los elementos no ordenados. En el algoritmo original de Hoare, se producen dos Ilamadas
a la funcién. La primera llamada asume como parametros L y J, mientras que la segunda, lo hace con | y R,
dividiendo la lista en dos nuevos bloques, que a su vez, cada uno de ellos se subdividird en dos nuevos
bloques, y asi hasta el final, en un proceso en el que las invocaciones crecen en una progresion 1, 2, 4, 8, 16...
es decir 20, 21,22 23 ..., 2",

Pero nos interesa el algoritmo implementado por Borland. En este caso tenemos una sola llamada
recursiva, que abarcara un bloque desde L hasta J, como podeis ver en la figura 1, letra d del primer algoritmo.
El resto de elementos los ignora, y tan solo sera, cuando salga de todas las llamadas recursivas generadas,
cuando retoma dicho resto de elementos al ejecutar la sentencia (L := 1), (I en ese momento valia una unidad
mas que J pues se habian cruzado) volviendo a repetir todo el bloque de cddigo desde el principio hasta que |
sea mayor o igual que R.

Por dicha razdn, si mirdis el algoritmo 1, letra f de la figura 1, los elementos 5, 6, y 8 ya estan ordenados
(color verde), e inicia entonces el proceso de ordenacion de 9, 27 y 25, repitiendo los mismos pasos seguidos
desde la letra 'a’ pero con un subvector de menor tamafio.

Como conclusion a todo lo dicho, nos preguntdbamos cual era el motivo por el que Borland habia elegido
esta modificacion del algoritmo QuickSort de Hoare, y la Unica conclusion a la que he llegado, es considerar
motivos de precaucion. En mi opinidn, me parece que se intenta evitar desbordar la pila, de tal forma que
sustituye la segunda invocacion recursiva, por una estructura iterativa que permitird que todas las Ilamadas se
hagan a través de una Unica invocacion (la primera), manteniendo practicamente la misma eficacia. Pero en
fin, esto es algo subjetivo y es tan solo mi opinidn..

Un nuevo método: Assign.

Para cada pregunta siempre existe una respuesta... ;0 quizas no?. Me preguntaba, tal y como os he
comentado en la introduccién, que cosas nuevas, con respecto a esta clase, ibamos a poder disfrutar. No es
facil obtener respuestas, pero es ¢imposible?

Imposible 0 no, vamos a compartirlas, con las reservas propias de la informacién que se obtiene a través
de Internet.

Este es el prototipo de la nueva funcion:
procedure Assign(ListA TList; Aoperator: TListAssignOp = |laCopy; ListB: TList = N1l);

Lo més bésico de Delphi

10

Objetos Auxiliares Il - Salvador Jover

Aqui se introducen unos conceptos nuevos propios de Object Pascal y que casualmente, se han visto
abordados por recientes preguntas en los foros del Grupo Albor. Concretamente estoy hablando de pasar
parametros a procedimientos y funciones con valores por defecto. La pregunta de un compariero era clara:
tengo una funcion con muchos parametros y quisiera obviar parte de ellos en la invocacion de la misma. La
respuesta también era clara: Object Pascal te permitird pasar pasar dichos parametros con valores por defecto,
escribiendo un prototipo similar al escrito lineas mas arriba. Hecho esto, podemos obviar todos aquellos a los
que tienen valores por defecto con la Unica condicion de que estén al final de la lista de parametros. Es decir,
gue no se pueden intercalar.

¢Que nos supone a nosotros esto en el actual procedimiento? Veamos la implementacion hecha:

if ListB <> nil then
begin
LSource : = ListB;
Assi gn(ListA);
end
el se
LSource : = ListA;

Es un ejemplo claro de lo dicho anteriormente. En el caso de que el segundo objeto TList sea distinto de
Nil, hecho este que implica la existencia del mismo, se invocara el procedimiento Assigh con un dnico
parametro (ListA). Esto significa, ni mas ni menos, que serd ejecutado el procedimiento y sera sobrescrita la
lista destino, desde la que se llama al método, por la de origen (ListA), para que asi pueda seguir el resto de
ejecucion de codigo y operar con la lista ListB, asignada como origen en la linea anterior (LSource := ListB;)

Pero, nos es posible invocar el procedimiento con tan solo los dos primeros pardmetros y obviar el
segundo TList. En ese caso, también nos lo deja claro: (LSource := ListA;), Si en la anterior ocasion,
operabamos con la lista destino, sobrescrita por listA, y ListB, ahora es listA quien operara con la lista destino,
que vuelvo a comentar, -ya que me parece importante- serd la que invoque al método.

Las operaciones que se pueden efectuar entre dos lista son variadas; y son las propias de la teoria de los
conjuntos, en cuanto dicho procedimiento combina origen y destino mediante interseccién de elementos,
union, etc...

Vamos a ver como se implementa el cddigo de cada una de las opciones, explicando la finalidad de las
mismas.

Case Aoperator of /'l segun el valor del operador pasado por paranetro. En el caso de no
//recibir ninguno asum réa que recibe | aCopy

He respetado el ejemplo original que acompafia a la implementacion ya que me parece representativo de la
operacion que se efectla. El ejemplo lo acompafio a la derecha y en formato de comentario.

® | aCopy:
/1 12345, 346 = 346
begin
d ear;
Capacity := LSource. Capacity;
for I := 0 to LSource.Count - 1 do

Add(LSource[l1]);
end;

Lo més bésico de Delphi

11

Objetos Auxiliares Il - Salvador Jover
Es el valor por defecto que toma la variable Aoperator.

El efecto que produce es el de sobrescribir la lista de destino con la lista de origen. Si pasamos a analizar
las distintas rutinas observamos que se inicia el bloque de cddigo con una llamada al método Clear de la lista
destino. Podemos recordar y para eso retomamos conceptos del articulo anterior, como la llamada al método
Clear, invocaba respectivamente SetCount(0) y SetCapacity)(0) y liberaba la memoria mediante ReallocMem.
Tras esto se fija la nueva capacidad de la lista, asignando a la lista destino la capacidad de la lista origen. Y nos
queda para finalizar, recorrer cada uno de los elementos de la lista destino, y proceder a afiadir cada uno de los
punteros almacenados en la lista origen.

Hecho esto, sobrescrita la lista destino por ListA, estamos preparados para operar entre nuestra lista
destino y ListB. Y esa operacion puede ser cualquiera de los valores que puede tomar la enumeracion del tipo
TlistAssignOp.

® | aAnd:
/1 12345, 346 = 34
for I := Count - 1 downto O do
if LSource.lndexOf(Itenms[1]) = -1 then
Delete(l);

El efecto que produce es el de la interseccidn de elementos de dos conjuntos. Nos quedaremos, pues, con
todos aquellos elementos comunes a los dos, y serdn eliminados el resto en la lista destino.

Un detalle importante de resaltar es el hecho de utilizar la estructura for downto do, que nos permite,
como Yya sabéis recorrer en sentido descendente el bucle. De esa forma recorremos hacia atrds en la lista
destino, desde el ultimo elemento de la lista, todos y cada uno de los elementos hasta llegar al primero.
Mientras hacemos este recorrido, comprobamos que el elemento Items[I], de tipo puntero, es encontrado en la
lista origen. Ese “encontrar”, era producido por la funcion IndexOf(), devolviendo -1 en caso de finalizar sin
éxito esa busqueda. Y logicamente, de ser asi, sera borrado de la lista destino.

¢Por qué para atrés y no hacia delante?. Muy sencillo. Borrar un elemento en sentido ascendente, hubiera
provocado el cambio de posiciones, pues todos los elementos se verian adelantados en una posicion. Y eso
echaria al traste nuestro objetivo.

® |a0:
/] 12345, 346 = 123456
for I := 0 to LSource.Count - 1 do
if IndexOf (LSource[l]) = -1 then
Add(LSource[1]);

El efecto que produce es de obtener una lista que contiene todos y cada uno de los elementos de las dos
listas. El bucle recorre todos los elementos de la lista origen, al tiempo que se busca en la lista destino si existe
el elemento Lsource[l], de la lista origen, y en el caso de que este no exista, lo afiade, obteniendo asi en destino
todos y cada uno de los elementos (punteros).

® | aXor:
/1 12345, 346 = 1256
begin
LTenp : = TList.Create;
try
LTenp. Capacity := LSource. Count;
for I :=0 to LSource.Count - 1 do

if IndexOf (LSource[l]) = -1 then
LTenp. Add(LSource[l]);

Lo més bésico de Delphi

12

Objetos Auxiliares Il - Salvador Jover

for I := Count - 1 dowmnto O do
if LSource.lndexOf(Items[1]) <> -1 then
Delete(l);

I := Count + LTenp. Count;
if Capacity <1 then

Capacity := 1|
for I := 0 to LTenp.Count - 1 do
Add(LTenp[1]);
finally
LTenp. Free;
end;
end;

El efecto que produce es conservar en la lista destino todos aquellos elementos no comunes con la lista
origen mas aquellos que existen en las lista origen y que no existen en la lista destino.

Necesitamos una lista temporal para ambas operaciones. La primera de ellas nos permitird obtener todos
aquellos elementos de la lista origen que no estan presentes en la lista destino: Asignamos la capacidad de la
lista temporal al numero de elementos en la lista de origen. Seguidamente, recorremos todos los elementos de
la lista de origen y cada uno de ellos, es buscado en la lista de destino. En el caso de no obtener resultado, que
es lo que pretendemos, son afiadidos a la lista temporal.

El segundo bucle for downto do,

for I := Count - 1 downto O do
if LSource.lndexOf (Items[1]) <> -1 then
Delete(l);

recorrerd en sentido descendente la lista destino, cuyos elementos seran buscados en la lista de origen y
en el caso de que sean encontrados, procederemos a borrarlos en la lista destino.

Asi, por un lado tenemos en la lista temporal los elementos de la lista origen no presentes en la lista
destino y por otro lado, todos los elementos en la lista destino que no estan presentes en la lista origen. Nos
queda reunirlos y para ello nos valemos del indice | que suma el total de elementos de la lista temporal y la de
destino para poder obtener la nueva capacidad en la lista destino. Nos aseguramos de que existe reservada
memoria para los nuevos elementos.

Hecho esto, afladiremos a la lista destino cada uno de los elementos de la lista temporal y finalmente sera
destruida dicha lista temporal, liberando su memoria.

® | aSrcUni que:
/1 12345, 346 = 125

for I := Count - 1 dowmnto O do
if LSource.lndexOf(Items[1]) <> -1 then
Delete(l);

Es el efecto contrario a laAnd, ya que la condicion de blsqueda es que lo encuentre para ser borrado.
Solamente seran conservados los elementos de la lista destino que no existan en la lista origen.

® | aDest Uni que:
/] 12345, 346 = 6
begin
LTenp : = TList.Create;
try
LTenp. Capacity := LSource. Count;

Lo més bésico de Delphi

13

Objetos Auxiliares Il - Salvador Jover

for | := LSource. Count -
if IndexOf (LSource[l])
LTenp. Add(LSource[]
Assi gn(LTenp) ;
finally
LTenp. Free;
end;
end;

1 downto O do
= -1 then
)

Es la ultima de las alternativas. Con ella, tendremos en destino aquellos elementos de la lista de origen no
comunes.

Necesitamos de una lista temporal para almacenar los resultados de las operaciones parciales. La
asignacién capacidad de la lista temporal toma el valor de capacidad de la lista de origen nos asegura el
espacio suficiente para afiadir los elementos. Se recorre en sentido descendente los elementos de la lista origen
y se buscan cada uno de ellos en destino, y en el caso resultar sin éxito dicha busqueda, procedemos a
afiadirlos a la lista temporal, cumpliendo asi el objetivo. Para volcar el contenido de la lista temporal sobre la
lista destino tan solo hemos de invocar el método Assign, tomando como pardmetro dicha lista temporal. Los
parametros pasados con valores por defecto hacen el resto, sobrescribiendo la lista destino con los elementos
de la lista temporal.

Finalmente, destruimos la lista temporal, liberando la memoria.

Y nos despedimos, por fin, de nuestra clase TList...

Finalizamos aqui nuestro primer objeto auxiliar, la clase TList. Hemos conocido practicamente todos los
detalles de esta importante clase, desgranando procedimientos, funciones, métodos, variables... todo ha sido
diseccionado para vuestra curiosidad ¢malsana? No creo... ;-).

En el articulo anterior podiamos observar que, dentro de los objetos auxiliares con capacidad de gestionar
listas de punteros, nos encontrdbamos también varios descendientes de dicha clase, como lo eran TClassList,
TObjectList o TComponentList. En el presente numero de la revista, vais a poder acompafiar a nuestro
compafiero Tavo Ibaceta en su recorrido acerca de las ventanas, adentrdndonos de forma natural al uso de
estos objetos descendientes de la clase TList sobre los que hemos hablado intensamente. Un magnifico
articulo, por cierto, que no debéis perderos: ”Ventanas - Reflexiones desordenadas”.

¢Y ahora, qué...?

Nuestra siguiente parada: la clase TStringList.

Nos espera un apasionante viaje sobre una lista especializada en algo muy necesario al programador: las
listas de cadenas. (Estais dispuestos a viajar un par de nimeros conmigo? Vosotros elegis los puntos de
parada. El viaje continua...

Lo mas bésico de Delphi

14

