Objetos auxiliares Ill - Salvador Jover

Objetos Auxiliares lll

Salvador Jover
s.jover@wanadoo.es

Las cadenas de caracteres van a ser una pieza clave
de muchos de nuestros desarrollos... En ese punto,
descubrimos la importancia que cobran las clases
TStrings y TStringList. Y Delphi empieza a cumplir
sus promesas... Lo vemos en el articulo.

(Qué programador de Delphi, no ha usado, con mayor o menor frecuencia, los métodos que nos facilita la
clase TStrings ...? Pregunta ingenua, ;no, creéis?. Resultan tan basicos para la manipulacion y
almacenamiento de listas de cadenas que, a menudo, nos pasan inadvertidos. Y estamos tan habituados a
ellos, que resulta dificil encontrar interés en describirlos, si no fuera quizas por la importancia de la funcion
que desempefan. En adelante nos referiremos a ellos como listas de Strings o listas de cadenas y nos
centraremos a lo largo de este pequefio articulo en desvelar aquellos aspectos que nos puedan ser de mayor
interés.

Como bibliografia, fieles siempre a nombrar aquellos textos sobre los que se documenta el articulo,
encontramos nuestra querida y tantas veces necesitada Guia del Desarrollador, las fuentes de la VCL que
acompanan a nuestro IDE, y en esta ocasion, incorporaremos algunos conceptos aportados por Steve
Teixeira y Xavier Pacheco en su libro “Guia de Desarrollo Delphi 5”. Este libro, editado por Prentice Hall,
lo encontraréis recomendado en la Web del Grupo Albor y alli podréis obtener mayor informacion sobre el
mismo. Un gran libro, si sefior... ;-)

Reflexionabamos en los dos articulos anteriores sobre las listas de punteros, representadas por la clase
TList. Algunos autores las clasifican, junto a éstas que nos ocupan, como “clases de apoyo”, - nosotros
participabamos de la denominacion que le da la misma Borland como Objetos Auxiliares- y el motivo no es
otro que su participacion en el desarrollo de otras clases. En ese aspecto, convendria ser recuperadas
nuestras reflexiones al principio de la serie y que en cada capitulo intentamos justificar. Pero, si la clase
TList es necesaria, a la postre nos resultara de vital importancia tener una clase especializada en el manejo
de listas de Strings; y en ese punto, Borland, sera fiel a las promesas de entregarnos un entorno rapido y
sencillo, que nos facilite, como programadores, el desarrollo de nuestros proyectos. Idea ésta, que ya he
compartido con vosotros en articulos anteriores.

Observemos:

Nos es necesario almacenar una lista de Strings y disponemos de un método, SaveToFile(), con el que
rapidamente seran creado un archivo de texto conteniéndolas... ;facil, no?

Nos es necesario cargarlas desde el archivo y la llamada al método LoadFromFile() lo hace de forma
sencilla. jmas aun?...

Nos es necesario incluir un nueva cadena, un nuevo String a nuestra lista y mira por donde, una simple
llamada a Add() producira tan magica proeza, de forma silenciosa y sin grandes aspavientos. Y la lista hoy
puede estar representada en un TMemo, pero mafiana ;por qué no en una instancia de la clase
TListBox?...Y de pronto caemos en la cuenta de algo que a primera vista nos pasa desapercibido y que vale
la pena recalcar:

Lo mas basico de Delphi 1

mailto:dejover@eresmas.com

Objetos auxiliares llI- Salvador Jover

“Estamos desarrollando una pequefia aplicacion y hemos dispuesto sobre nuestro TForm varios componentes.
Afiadimos un componente TMemo que nos permitira trabajar con un pequefio editor de texto, un representante de la
clase TComboBox con el que cargar las fuentes disponibles por el editor. Sin representacion visual, un TQuery y un
TDataSource conectandonos a una fuente de datos...”

(Qué pueden tener en comin TMemo, TQuery o TComboBox? Interoperabilidad, entre otras cosas. Ni
mas ni menos. El primer componente dispone de una propiedad, Lines, de tipo TStrings. El segundo
también, pero en este caso su nombre es SOL, y nos permitira ejecutar una instruccion en dicho lenguaje. En
el tercero sera la propiedad ltems del objeto, conocida de sobra por todos nosotros. Los tres tienen en
comun una propiedad cuyo tipo es TStrings y que ha de permitir, interoperar entre ellos mediante dicha
propiedad, permitiendo que el contenido de Memol.Lines ser “asignado” a la lista representada en la
propiedad Queryl.SQL o que las distintas lineas de un TComboBox puedan devenir de la “asignacion” por
cualquier otro componente con una propiedad del mismo tipo. Se convierte asi, en un interfaz comun a
todos los objetos que incorporan el uso y manipulacion de listas de cadenas.

(Solo cadenas de caracteres?... No, no... Ademas, se nos permite asociar a cada una de los Strings que
componen dicha lista, una referencia a un objeto, a un TObject. El uso que se le quiera dar a gusto de cada
cual. La Guia del Desarrollador, que en varias ocasiones hemos citado, nos comenta uno de los usos
habituales y que esta relacionado con la asociacion de un mapa de bits a un String, pero que puede ser uno
de los tantos usos que nos podamos imaginar.

Y ligado al concepto comentado de interoperabilidad entre componentes, un aspecto mas sutil: dado que
la introduccion de la clase TStrings en la VCL se ha efectuado a un nivel de jerarquia muy alto, muy
cercano a la raiz TObject, su incorporacion como parte de innumerables objetos descendientes, hace
compartir idénticos métodos, facilitando intuitivamente al desarrollador el conocimiento y uso de la VCL.
En ese sentido, el programador que se acerca por vez primera a nuestro entorno se sorprende de que si
quiero afiadir un String en un memorandum, como asi lo llama Borland, utilice el mismo método que para
afadir una cadena de caracteres en un TListBox. Se convierte en algo de por si intuitivo. Nos acabamos por
acostumbrar a dicho razonamiento: -No lo conozco pero seguro que si hago...

Y encima se cumple: existe el método y su uso es conocido por nosotros. Es parte del espiritu con el que
se ha construido la VCL.

En ese sentido, podemos afirmar que Delphi cumple la promesa de minimizar el esfuerzo en cada uno de
nuestros desarrollos, estandarizando métodos y evitando en muchos casos la ingrata tarea de adivinar, cual
mago que consulta su magica bola. Y si no, para muestra, un paseo por el API de Windows, tan distante de
ese espiritu con el que esta construida la VCL y tan propio de Microsoft.

Sin duda puede ser mejorable, no seré yo quien lo discuta. Sin embargo, sigue viva, evolucionando en
cada nueva version,, adaptandose a nuevas circunstancias y nuevos requerimientos.

TStrings y TStringList.

Volviendo a centrar el tema, manteniamos la necesidad de un objeto que nos permitiera trabajar con
listas de cadenas de caracteres, respondiendo a una concrecion del TDA lista sobre el tipo String. Pero el
animo de crear ese interfaz comun lleva a los creadores de la VCL a disefiar la clase TStrings como una
clase en la que se definen basicamente métodos abstractos y virtuales. Los métodos abstractos no se
implementan sino que tan solo se definen, dejando que sean sus descendientes los que lo hagan y puedan asi
particularizar y concretar dicha implementacion. En el otro extremo, la conversion de un método estatico en
virtual permitira que se puedan redefinir de ser necesario. Cualquier intento de hacerlo en TStrings hubiera
sido contraproducente en aras de obtener la ansiada interoperabilidad. Asi pues, podemos comprender la
existencia de la clase TStringList, descendiente de TStrings, y que ademas de las capacidades que

Lo mas basico de Delphi 2

Objetos auxiliares llI- Salvador Jover

posteriormente estudiaremos, heredadas de TStrings, permitira la ordenacion de las cadenas que componen
la lista [¢recuerdan el método Sort() que pudimos curiosear en el articulo anterior y que afectaba a nuestro
TList? Un buen momento para hacerlo ;-)], prohibir su duplicacién o permitir la respuesta a un cambio en el
contenido de la lista [evento OnChange y OnChanging].

Veamos la parte pubica en el interfaz de la clase TStrings ya que nos va a dar una idea de los métodos
disponibles en la clase que posteriormente veremos:

TStrings = class(TPersistent)
public
destructor Destroy; override;
function Add(const S: string): Integer; virtual;
function AddObject (const S: string; AObject: TObject): Integer; virtual;
procedure Append (const S: string) ;
procedure AddStrings(Strings: TStrings); wvirtual;
procedure Assign(Source: TPersistent); override;
procedure BeginUpdate;
procedure Clear; virtual; abstract;
procedure Delete (Index: Integer); virtual; abstract;
procedure EndUpdate;
function Equals (Strings: TStrings): Boolean;
procedure Exchange (Indexl, Index2: Integer); virtual;
function GetText: PChar; virtual;
function IndexOf (const S: string): Integer; virtual;
function IndexOfName (const Name: string): Integer;
function IndexOfObject (AObject: TObject): Integer;
procedure Insert (Index: Integer; const S: string); virtual; abstract;
procedure InsertObject (Index: Integer; const S: string; AObject: TObject) ;
procedure LoadFromFile (const FileName: string); virtual;
procedure LoadFromStream(Stream: TStream); virtual;
procedure Move (CurIndex, NewlIndex: Integer); virtual;
procedure SaveToFile (const FileName: string); virtual;
procedure SaveToStream(Stream: TStream); wvirtual;
procedure SetText (Text: PChar); virtual;
end;

Siguiendo los argumentos esgrimidos en los parrafos anteriores, métodos publicos como:

procedure Delete (Index: Integer); virtual; abstract;

, declarados como abstractos en TStrings, deberan obligatoriamente ser redeclarados en el descendiente,
para nosotros, en este momento, la clase TStringList. De no hacerlo asi, y tras ser creada una instancia de
dicha clase, la invocacion del método produciria una excepcion.

Y aqui llegamos a uno de los aspectos que menos claros quedan tras la lectura de la Guia de Desarrollo
de Delphi y que en mi opiniéon merecen un esfuerzo por comentar: Tras la introduccion del concepto de lista
de cadenas, nuestra Guia abre un apartado para comentar los aspectos de la creacion de lista. Previamente,
ya se nos ha comentado parte de lo observado hasta ahora, pero se hace por desgracia de forma parcial. Se
nos ha dicho que la clase TStrings llegara a convertirse en un interfaz comun a todas las instancias de clases
que la utilizan pero en ningln lado se nos dice como... porque se da por sabido o adivinado... ;-)

Seguimos leyendo. /Y la creacion?. La Guia del Desarrollador distingue dos tipos de creacion segin la
duracion del objeto. Para listas de cadenas con ambito local, es decir cuya vida va a estar ligada a un
procedimiento o a una funcion -para entendernos- se aconseja hacerlo del modo habitual, protegido su uso
mediante un #ry y resguardado su liberacion mediante un finally: Vale la pena verlo:

procedure Tforml.MiObjetoOnClick(Sender: TObject) ;
var

ListaRapida: TStrings;
begin

Lo mas basico de Delphi 3

Objetos auxiliares llI- Salvador Jover

ListaRapida:= TStringList.Create;
try
//usamos la lista
ListaRapida.Add('Soy la primera') ;
finally
ListaRapida.Free; //la liberamos finalmente
end;
end;

Un momento... Parar ahi. ;Por que la creacion de la lista de cadenas la efectuamos mediante una llamada
al constructor de su descendiente?. Aqui es donde esta el meollo de la cuestion y sin embargo escasean las
palabras. Debemos volver a la idea de que la clase TStrings ha sido creada como clase base, en cuyo
interfaz se han declarado métodos abstractos que tendran su implementacion en sus descendientes y esta
estrategia, permitida por el lenguaje, es la razén ultima de la creacion del interfaz comin y la

interoperabilidad.

Para verlo con mayor claridad, necesitamos acudir a la misma VCL y asistir al uso de la clase TStrings
como parte de otro componente. Fijémonos en la unidad “Stdctrls.pas”. En esta unidad podemos tomar

como ejemplo la clase TCustomMemo, antecedente del componente TMemo.

Veamos por un lado como se declara y construye la clase TCustomMemo:

TCustomMemo = class (TCustomEdit)
private
FLines: TStrings;
FAlignment: TAlignment;
FScrollBars: TScrollStyle;

implementacidn

constructor TCustomMemo.Create (AOwner: TComponent) ;

begin

inherited Create (AOwner) ;

Width := 185;

Height := 89;

AutoSize := False;

FWordWrap := True;

FWantReturns := True;

FLines := TMemoStrings.Create;

TMemoStrings (FLines) .Memo := Self;
end;

Y por otro lado, el interfaz de la clase TMemoStrings, descendiente de TStrings, de cuya instancia nos

hemos valido para crear FLines.

TMemoStrings = class (TStrings)
private
Memo: TCustomMemo; // de vital importancia //
protected
function Get (Index: Integer): string; override;
function GetCount: Integer; override;
function GetTextStr: string; override;
procedure Put (Index: Integer; const S: string); override;
procedure SetTextStr (const Value: string); override;
procedure SetUpdateState (Updating: Boolean); override;
public
procedure Clear; override;
procedure Delete (Index: Integer); override;
procedure Insert (Index: Integer; const S: string); override;
end;

Lo mas basico de Delphi

Objetos auxiliares llI- Salvador Jover

Una conclusion por favor...

La conclusion no podia hacerse esperar. La instanciacion de un objeto TMemoStrings a través de la
invocacion de su constructor, nos permite no solo que todos los objetos que manipulan listas de Strings
puedan compartir el mismo Tipo (TStrings), sino que, la misma composicion de la instancia de
TMemoStrings incluird un objeto de la clase TCustomMemo, cuyo puntero nos permite redefinir y
completar la manipulacion de las Lista en los métodos de la clase descendiente. No es casual la asignacion
“TMemoStrings(FLines).Memo := Self:” El campo Memo es definido como TCustomMemo y como tal,
puede recibir un puntero a la clase que se esta creando. Asi pues, y por poner un ejemplo que nos resulte
sencillo, la invocacion del método Clear en la instancia de TMemoStrings, provocara la invocacion del
método Clear en nuestro TCustomMemo,

procedure TMemoStrings.Clear;
begin

Memo.Clear;
end;

heredado de su ancestro TCustomEdit, ejecutando finalmente la rutina del API de Windows que cumple
el cometido esperado “SetWindowText(Handle, ");”

Observad, por tanto, que la construccion de los objetos que se componen de una de estas Listas, ya sea un
TListBox, un TComboBox, o un TMemo, etc..., estara ligada siempre al desarrollo de técnicas semejantes a
la vista en el ejemplo anterior.

Estos conceptos se explican con cierto detalle en el libro de Texeira y Pacheco, y tienen cabida en un
apartado que los autores dedican a los elementos claves de la VCL, que se agradece sin duda alguna. De
hecho sus palabras advierten claramente cual es la situacion:

“Debemos aclarar que, aunque la clase TStrings defina sus métodos, no implementa dichos métodos para
manipular secuencias. La clase descendiente TStrings es la que realiza la implementacion de estos métodos. Esto es
importante para un disefiador de componentes ya que éste debe saber como ejecutar esta técnica tal como lo hacen los
componentes Delphi. Cuando no se estd seguro siempre es conveniente acudir al codigo fuente de la VCL para ver
como Borland ejecuta estas técnicas.”

Movimientos peligrosos...

iQuien diria que podemos estar hablando de un nuevo ritmo que sacuda nuestro cuerpo! Nada mas lejos
de la realidad. Simplemente, nos haremos eco de una advertencia que nos hace tanto la Guia del
Desarrollador, como Texeira y Pacheco en su libro. El titulo resulta llamativo, pero es bueno en este caso,
llamar la atencion de un pequefio detalle que puede tener consecuencias catastroficas o imprevisibles:
olvidar que una referencia a un objeto no deja de ser un puntero.

Asi pues podemos empefiarnos en intentar hacer la asignacion:
MilListaString 1 := MiOtraListaString,

donde ambos identificadores representan instancias de TStringList creadas, pensando que tras la
asignacion hemos copiado el contenido de MiOtraListaString en la primera... y no es asi. Quedémonos con
la figura 1 donde lo observaremos claramente:

Como podemos apreciar, al efectuar la asignacion, lo que finalmente obtenemos es que el identificador
MiListaStringl, como puntero que es y que no deja de ser, pese a ser transparente para nosotros, apunte
hacia el nuevo objeto, perdiendo el original y quedando nuestro programa en condiciones inciertas que no
garantizan en modo alguno resultados no erroneos en la ejecucion.

Lo mas basico de Delphi 5

Objetos auxiliares llI- Salvador Jover

Nuestra garantia es el uso del método Assign como norma general, que internamente, tras efectuar las
comprobaciones de clase sobre el parametro que recibe, garantiza que el contenido es copiado de forma
correcta. Pero no nos quedemos tan solo en palabras y veamoslo con un ejemplo sencillo, que nos permita
observar el problema con claridad. Para ello vamos a introducir algo de codigo en la pulsacién de un
TButton y reproduzcamos una situacion similar:

procedure TForml.ButtonlClick(Sender: TObject) ;

var
listal, lista2: TStringlList;
begin
listal:= TStringList.Create; //Creamos la primera lista
lista2:= TStringList.Create; //Creamos la segunda lista
try
listal.Add('Hola'); //Afladimos una cadena a la primera lista
lista2.Add(Adids); //Afladimos una cadena a la segunda lista
listal:= lista2; //Agqui hemos metido la pata...
lista2.Add('Hola'); //Afiadimos una nueva cadena a la segunda lista
//Conclugidn: la modificacidn de la segunda lista nos modifica la primera
ShowMessage (IntToStr (listal.Count)); //listal.count nos devuelve el valor 2
finally
listal.Free;
lista2.Free; // Se genera la excepcidn... Algo
L MiListaString1
end;
end;

Ha habido un uso incorrecto y la asignacion, ha hecho que
listal ahora apunte hacia el contenido de lista2, perdiendo el
acceso a la memoria que habia reservado cuando fue afiadida la
primera cadena. No solo eso, ademads, cualquier cambio en
lista2 le afectara, como demuestra la ventana que nos muestra
el valor “listal.count = 2”. Si cambiais la sentencia de
asignacion por “listal.assign(lista2),”, podréis ver que el
resultado es correcto, el proceso se hace con correccion y
listal.count nos devuelve el valor 1. Trasladar este eje’mplo a MiListaString1:= MiOtraListaString
una clase como TMemo, sobre la que hablabamos
anteriormente, y encontraréis cuan facilmente podéis perder el
acceso a la memoria a la que apunta el campo FLines, y cuan MilistaString1

imprevisibles, inciertos y dificiles de localizar pueden ser los .v

MiOtralistaString

errores posteriores.

¢ Qué puedo hacer con mi Lista...?

Si analizamos con detenimiento el interfaz que ha
declarado TStrings en lineas anteriores, podremos observar que
para operaciones de naturaleza similar a las que podiamos ver
para la clase TList, se mantiene una nomenclatura similar,
imponiendo coherencia y facilitando sin duda el aprendizaje y
comprension de los mismos. Al fin y al cabo, ambas se entre dos objetos
corresponden con el tipo de dato abstracto Lista. Logicamente,
la declaracion de métodos de la clases TStrings y TStringList
es mas numerosa dado que nos cefiimos ahora a la manipulacion de listas de cadenas de caracteres y existe
mayor diversidad de operaciones posibles.

MiOtraListaString

Figural Resultado de una asignacion

Lo mas basico de Delphi 6

Objetos auxiliares llI- Salvador Jover

Nuestro recorrido se ajustara, basicamente, a la clase TStringList y juntos intentaremos que nuestro
viaje sea productivo y ameno. Asi que, la primera pregunta que me haria, toda vez que se ha creado con
éxito mi lista, es: ;Y ahora que...?. Veamos, ahora, que métodos nos permitiran afiadir elementos a una lista,
mientras quedara para una ocasion posterior la modificacion o eliminacion de dichos elementos:

® Insertar elementos en nuestra lista.

La operacion mas sencilla que se nos puede ocurrir es afiadir una cadena, un String, a nuestra lista, y
para hacerlo, disponemos de dos métodos a los que estamos sobradamente acostumbrados: Add() e Insert()
, ¥ la eleccion de uno o de otro dependera tan solo de que queramos hacer la insercion sobre el ltimo
elemento de la lista o bien en una posicion determinada de la misma. Veamos unos ejemplos cualquiera:

Var

cadena: String;

begin

Lista.Add('He afladido mi primer cadena');
cadena:= 'Voy a afladir la segunda');
Lista.Add (cadena) ;

Lista.Insert (0, 'Esta la intercalo...');

Veamos los implementacion que se hace en ambas funciones, pero antes comentaremos el significado
que tiene declarar el pardmetro como constante, ya que es utilizado por practicamente todos los
procedimientos y funciones que veremos. Si seguimos las palabras de la Guia de Object Pascal, llegaremos
al concepto de Parametros constantes, es decir aquellos que se acompafan de la palabra reservada const. El
uso de esta palabra permitira al compilador una optimizacion de cddigo y su uso es similar a la
consideracion de Parametro de Valor, salvo que al ser considerados como constantes, su valor no podran ser
modificado. De ahi que pueda ser optimizado por el compilador.

Podemos empezar con la observacion de como se implementa el método Add::

function TStringList.Add(const S: string): Integer;

begin
if not Sorted then
Result := FCount

else

if Find (S, Result) then
case Duplicates of
dupIgnore: Exit;
dupError: Error (@SDuplicateString, O0);
end;
InsertItem(Result, S);
end;

El valor de retorno de Add, de tipo entero, se corresponde a la posicion del elemento que se ha afiadido
dentro de la lista, que empieza a contar su primer elemento desde 0. En este punto resulta imprescindible
que se acuda a los razonamientos que haciamos en los dos articulos anteriores, que nos serviran para
entender el significado de dicho indice dentro de una propiedad matricial heredada de TStrings, como
Strings. Los puntos comunes apareceran tan pronto como relacionemos el puntero PStringltemList hacia
una estructura matricial cuyo tipo es TStringltem (ver el interfaz), con el puntero PPointerList cuando
estudiabamos la clase TList. Nos serviremos de similares razonamientos para entender la relacion existente
entre la propiedad matricial Strings con el puntero PStringltemList.

La funcidn recibira como parametro constante una cadena de caracteres de tipo String. Comentabamos
anteriormente que la clase TStringlList permitira la ordenacion de las cadenas siguiendo un criterio
alfabético, y por lo tanto, cuando es afiadida cualquier cadena a la lista lo primero que habra que comprobar
es que el usuario haya decidido mantener activado el ordenamiento. Si Sorted, de tipo booleano, devolviera

Lo mas basico de Delphi 7

Objetos auxiliares llI- Salvador Jover

false, es decir, si los elementos de la lista no estan ordenados, podemos devolver como indice el valor del

campo FCount, que representa al igual que en TList, la posicion del ultimo elemento mas 1 (la posicion en
que se debera insertar la cadena).

En caso contrario, suponemos que la lista esta ordenada y aqui se presentan varios casos segiin hayamos

optado por permitir que se puedan duplicar cadenas o no, o bien que queramos que se genere una excepcion
en caso de intentar afiadir una cadena a la lista.

if Find (S, Result) then

El método Find es una funcion cuyo valor de retorno sera si ha tenido éxito o no la busqueda de la cadena
en la lista y de haber tenido éxito, dato que Result es pasado por referencia, tomara como valor la posicion

del indice de la matriz en la que la busqueda ha tenido éxito. No obstante, el hecho de tener éxito, obliga a
una ultima evaluacion:

case Duplicates of

dupIgnore: Exit;

dupError: Error (@SDuplicateString, O0);
end;
InsertItem(Result, S);

Si debemos ignorar los duplicados (duplgnore), saldremos de la funcion sin insertar la cadena, ya que
esta ya existe en la lista. Si debemos generar la excepcion (dupError) también. Y tan solo en caso contrario:

que la lista no este ordenada o que si lo esta el valor de la variable enumerada Duplicates sea dupAccept,
sera invocado el método Insertltem().

Por otro lado y de una forma similar:

procedure TStringList.Insert (Index: Integer; comnst S: string);

begin
if Sorted then Error (@SSortedListError, 0);
if (Index < 0) or (Index > FCount) then Error (@SListIndexError, Index) ;
InsertItem(Index, S);

end;

Cuando es invocado este procedimiento es para insertar un string en una determinada posicion de la lista,
que viene marcada por el parametro Index de tipo Entero. Hay que tener en cuenta, que este método no
puede ser invocado en el caso de estar activo el ordenamiento automatico, que nos marca la propiedad
booleana Sorted. En dicho caso se generara una excepcion.

De no estar activado el orden, la rutina siguiente nos protegera frente a los errores de rango, evitando que
podamos elegir un valor mayor que FCount (recordamos que FCount representaba la posicion del Gltimo
elemento mas 1) y menor que 0, que representa al primer elemento de la lista.

Si todo ha ido correcto, la invocacion del procedimiento Insertltem() lo da por finalizado.

procedure TStringList.InsertItem(Index: Integer; const S: string);
begin
Changing;
if FCount = FCapacity then Grow;
if Index < FCount then
System.Move (FList” [Index], FList”[Index + 1],
(FCount - Index) * SizeOf (TStringIltem)) ;
with FList” [Index] do
begin
Pointer (FString) := nil;
FObject := nil;
FString := S;
end;
Inc (FCount) ;
Changed;
end;

Lo mas béasico de Delphi 8

Objetos auxiliares llI- Salvador Jover

En ambos casos, tanto con la Funciéon Add como con el procedimiento Insert, llamamos finalmente al
método Insertltem() que sera el que realmente hace la faena sucia, digamoslo asi. Aunque puedo ser
pesado, vuelve a ser necesario releer el primero de los articulos. La mecéanica que se seguia para ajustar el
tamafio del vector dinamico, las llamadas a Grow y el desplazamiento del vector mediante Sistem.Move son
idénticos por lo que no es preciso profundizar en ello y me remito de nuevo a su lectura.

Podemos resaltar varias aspectos que pueden resultar de interés:

Las invocaciones de los métodos Changing y Changed, al principio y al final del procedimiento, llaman a
los gestores de eventos respectivos, dandonos la oportunidad como usuarios del componente de
implementar codigo en respuesta de los mismos.

procedure TStringList.Changed;
begin

if (FUpdateCount = 0) and Assigned (FOnChange) then FOnChange (Self) ;
end;

procedure TStringList.Changing;
begin

if (FUpdateCount = 0) and Assigned (FOnChanging) then FOnChanging(Self) ;
end;

Una vez, insertado el nuevo elemento a la lista, se procede a incrementar el contador FCount.

iY los objetos que...!

Deciamos que una instancia de la clase TStringList nos serviria para asociar un objeto a cada una de las
cadenas de nuestra lista, pero aqui surgen detalles que debemos conocer y que a simple vista no se perciben.
Es responsabilidad del programador el objeto en si, asociado a cada una de las cadenas, ya que la
responsabilidad de la lista acaba en la referencia al mismo. Si la lista es liberada, deberian previamente
destruirse aquellos objetos que carezcan de sentido fuera de ella, tal y como lo haciamos con la clase TList.
Nuestra instancia tan solo almacena una referencia al objeto, un puntero, dentro de la estructura declarada
en seccion de tipos de la interfaz.

Vale la pena verla y darse cuenta que en FObject podremos guardar un puntero hacia nuestro objeto,
logicamente asociado al string FString, pues son parte del mismo registro, del mismo Record:

const
MaxListSize = Maxint div 16;
type
PStringItem = “TStringltem;

TStringItem = record
FString: string;
FObject: TObject;

end;
PStringlItemList = *“TStringItemList;
TStringItemList = array[0..MaxListSize] of TStringItem;

Con respecto al tema de la insercion, adelantaremos que nuestros objetos no tendran vida fuera de la
cadena a la que estan unidos, por lo que, si estudiamos con detenimiento los métodos que nos permiten
afadir objetos, InsertObject() y AddObject(), heredados de TStrings, veremos que precisamente se valen
de las cadenas para buscar un posicionamiento dentro de la matriz. Una vez obtenido dicho indice se
procede a afadir la referencia al objeto a la lista en dicha posicion. (Ver: PutObject(Index: Integer;
Aobject:TObject;).

Lo mas basico de Delphi 9

Objetos auxiliares IllI- Salvador Jover

La diferencia entre ambos métodos, |a podremos desprender de su misma nomenclatura y que viene a
coincidir, 16gicamente, con la misma distincion establecida entre Insert y Add, vista en lineas anteriores y
que me parece no vae lapenaincidir mas.

Un respiro, por favor... conclusiones finales.

Nos tomamos un respiro. Es tan solo un ato en el camino que nos permitird asimilar cuanto hemos
compartido. ;-)

Pero no se acaba aqui € camino pues nos queda todavia mucha travesia que recorrer. Nos queda acabar
de husmear en lo que es ahora nuestro centro de atencion: la clase TStringList, ver aquellos métodos mas
habituales de manipulaciéon de strings, aguellos que me puedan permitir obtener valores, o eliminarlos,
aquellas propiedades que puedo utilizar para recorrer la matriz. ¢Sabiais que las propiedades Names y
Values de la clase T Strings os permiten trabajar en con el formato Nombre=Valor propio de los archivos de
configuracion?. ¢O que la propiedad Text os devolvera en un string la concatenacion de los strings de la
listamediante #13 y #107?...

Nos queda en definitiva, y si vosotros queréis, otro peldafio que subir y otro camino que andar. Nos
vemos en € siguiente nimero de Sintesis,

Un saludo y hasta pronto.

Lo mas basico de Delphi 10

