Salvador Jover — mailto:s.jover@wanadoo.es

Objetos Auxiliares IV

Vamos a iniciar el pendltimo capitulo de esta
pequeia serie. Andamos pues, muy cerca de su
conclusion...

Creo que es un buen momento para volver la vista atras, y lo vamos a hacer brevemente, en el inicio de
este articulo, para todos aquellos amigos que se puedan haber incorporado en estos momentos y a los que,
recomendaria iniciaran esta lectura con cautela, y con la penitencia de volver al primer nimero de la serie:

El primer articulo, articulo de introduccion, nos sirvio para presentar una vista global de todos aquellos
objetos que iban a ser considerados por nosotros. Era el tiempo de las primeras reflexiones sobre el concepto
de Objeto Auxiliar, que iba a dar nombre a la serie. Era el numero 3 de la revista Sintesis.

Ha llovido mucho desde aquel momento, ;no os parece?. Intentabamos explicar los motivos, las
razones, que podian justificar iniciarla y nos extendiamos sobre las relaciones jerarquicas que se establecian
entre dichos objetos; y alla quedaron las figuras de las primeras paginas, donde se describian dichas
relaciones. Fueron paginas que nos sirvieron para romper el hielo y conocernos un poco mas.
Inmediatamente, nos pusimos el buzo de trabajo y comenzamos nuestra andadura sobre la clase TList, y en
ello se nos fue un interminable articulo. A la conclusion del mismo, practicamente habiamos abordado dicha
clase, pero aun nos restaria otro més para finalizarla. Habiamos dejado de lado en un primer momento,
como se habia implementado el ordenamiento en las listas de punteros, algo menos conocido y que
precisaba mas detenimiento. Era el método Sor#('), motivo del segundo capitulo de la serie.

Ademas, queriamos ir un poco mas lejos, y buscamos nuevos métodos incorporados en Delphi 6 para la
clase TList, Assign(), que nos ayudaria a relacionar dos listas de punteros. Y como complemento a todo
esto, se acompafio dicho niimero de un par de ejemplos de codigo fuente, que servirian para culminar, por
fin, la clase TList.

Con la llegada del articulo que precede a éste, el numero 3 de la serie, observamos que todo el
contenido era realmente basico, y que a menudo, es utilizado por nosotros sin percibirlo. Son estructuras
fundamentales dentro de la programacion en general, como pueden ser una lista de punteros, representadas
en la clase TList, o especializaciones de €sta, bien en el manejo de cadenas de caracteres, como puede ser la
clase TStrings o TStringList, o de otros objetos, como TObjectList o TComponentList. La serie no lo era
todo en si misma y nos apoyabamos en los articulos de otros compaifieros, con su permiso y colaboracion,
para abordar tan extenso surtido de objetos. Ademads, y sera motivo para el ultimo capitulo que cierra esta
pequenia serie, abordaremos el analisis de las clases que representan estructuras tan basicas como las “pilas”
o las “colas”.

Asi pues, paralelo a nuestro avance, en el numero 4 de Sintesis, Tavo Ibaceta, se sumergia dentro de
las listas especializadas en componentes, como TComponentsList, dentro de su magnifica serie de articulos
sobre creacion de ventanas: “Ventanas — Reflexiones desordenadas 111"

De igual forma sucedia con los objetos auxiliares relacionados con la introduccion, modificacion y
borrado de datos en el registro de Windows y ficheros Ini, tan conocidos por nosotros. Nuestro compaiiero,
Carlos Conca, se hacia eco de ello en su articulo: “;Ficheros de configuracion o Base de Registros? 111",
cuya lectura no puede ser menos interesante. Hablamos también del niimero 4 de Sintesis.

Lo maés basico de Delphi 1

mailto:dejover@eresmas.com

Objetos Auxiliares IV

Ambos articulos, por su calidad, van a enriquecer el contenido de esta serie, que por razones de
extension, no podria abarcar por si sola tan numerosas clases sin evitar el bostezo del lector.

También es un buen momento para los que quieran introducirse en C++, avanzar en paralelo con la serie
iniciada por Mario Rodriguez sobre la STL, y encontrar asi puntos de encuentro con los conceptos
desarrollados. El nimero de dos de Sintesis nos dejaba un articulo sobre el Contenedor List. El nimero tres
hacia lo propio con el Contenedor Vector.

Para finalizar, dejamos también un promesa de abordar, en mejor ocasion, aquellos objetos auxiliares
descendientes de la clase TStream, relacionados directamente con el almacenamiento, y manipulacion de
flujos de bits, cuyos métodos tan populares y practicos, afectaban a una gran cantidad de componentes. Fue
postergado para poder ser visto desde un angulo mayor y que abordara otros conceptos mas generales. De
momento queda en el aire, y sera retomado por mi o por cualquiera de los que intentamos aportar un
pequefio grano de arena en este proyecto que es el grupo Albor. Y ya que hablamos del proyecto, me
perdonaréis si desde aqui os animo a participar en él, colaborando, ya desde los foros; ya desde la Web,
haciendo uso de ella y ayudandonos a llenarla de contenido; ya desde estas paginas, compartiendo con
tantos compafieros vuestra experiencia.

Pero no nos quedemos aqui y veamos en que punto quedamos...

Resolviendo las cuentas pendientes...

Al finalizar el articulo anterior, disponiamos de los métodos necesarios para insertar elementos en
nuestra lista, bien al final de la misma, bien en una posicion determinada. Haciamos hincapi€, y lo volvemos
a hacer de nuevo, en que nos era necesario una lectura del primer articulo de la serie sobre la clase TList,
para comprender los mecanismos empleados en la reserva de memoria, en el método seguido para ajustar el
tamafio del vector dindmico, que logicamente, por evitar una innecesaria repeticion y por dar mayor
dinamismo a la serie se omitian. En aquel articulo se intentaba seguir paso por paso, las lineas principales de
las fuentes, comentando aquellos aspectos que debian ser resaltados.

® Manipulemos la lista...

Se nos puede ocurrir, dado que disponemos de cadenas de texto insertadas en nuestro objeto
TStringList, decidir en buena hora, que una de ellas no merece gozar de la dignidad de estar alli, con las
demas. Es decir, nos vamos a disponer a eliminar una de las entradas hechas y para ello, tan solo nos hace
falta saber, el lugar que ocupa la misma. Ese sera nuestro parametro de entrada al método Delete().

Veamos la implementacion que se hace del método:

procedure TStringList.Delete(Index: Integer) ;
begin
if (Index < 0) or (Index >= FCount) then Error (@SListIndexError, Index) ;
Changing;
Finalize (FList” [Index]) ;
Dec (FCount) ;
if Index < FCount then
System.Move (FList” [Index + 1], FList”[Index],
(FCount - Index) * SizeOf (TStringItem)) ;
Changed;
end;

El procedimiento, recibe como parametro el indice que ocupa la cadena en el vector. Recordemos que
dicho vector inicia su primer elemento en 0 (cero) y finaliza con el elemento (Count — 1). Esto es

Lo maés béasico de Delphi 2

Objetos Auxiliares IV

importante. Cualquier método empleado para recorrer dicho vector se podra apoyar en ambos valores
numéricos para evitar salir del rango del vector, que es uno de los primeros errores tipicos del programador
que se inicia. Es lo que se suele llamar por algunos autores como errores de cercado y que nos llevan a una
pregunta mas que tipica:

En un ARRAYT0..100] of TPersonas, ;Cuantas personas conviven?...
Si respondisteis 101 habréis sobrevivido a un error de cercado.

Ahora bien, si la pregunta es: Nuestro objeto de la clase TStringList nos devuelve Count = 100... jcual
es el ultimo elemento de la misma? Ya no estd tan claro... cualquier individuo algo impulsivo se habria
apresurado a manifestar rapidamente: “-Pues claro, el 100. Es 16gico hay cien elementos”...

Nuestro amigo impulsivo, generara al intentar acceder a dicha posicion, una hermosa y brillante
excepcion.

Volviendo al procedimiento, observamos que primero se comprueba que nuestro parametro estd en el
rango del vector, para en caso contrario, abortar el procedimiento con una excepcion. Justo lo que
pretendiamos resaltar:

if (Index < 0) or (Index >= FCount) then Error (@SListIndexError, Index) ;

En la llamada al método Changing damos una oportunidad al gestor de evento tal y como
comentabamos en el niumero anterior, facilitandonos, que podamos hacer aquellas acciones que creamos
oportunas antes de que cambie la lista.

Finalize (FList” [Index]) ;

Esta rutina que se declara en el modulo System, nos ayudara a liberar la memoria asociada a la cadena
que deseamos eliminar. Y seguidamente, tan solo nos queda ajustar el vector, disminuyendo en una unidad
el recuento de los elementos Dec(FCount) y trasladar cualquier posicion posterior a dicho indice una
posicion menos, reagrupando el vector y eliminando el hueco dejado por la cadena eliminada.

System.Move (FList” [Index + 1], FList”[Index], (FCount - Index) * SizeOf (TStringItem)) ;

Nos queda tan solo hacer la llamada para que se pueda ejecutar el evento OnChanged, toda vez que
nuestra lista ya ha cambiando, volviendo a dar una oportunidad a nuestro usuario para que pueda tomar las
medidas que crea necesarias.

Pero si os dais cuenta de una cosa... hablabamos en nuestro nimero anterior como nuestra lista de
cadenas era capaz de asociar un objeto a cada una de las cadenas. Creo que me comprendéis. No se hace
referencia a nuestros objetos en el cddigo que hemos visto, por lo que, de haber existido asociado al
elemento que se iba a eliminar, hubiéramos debido liberarlo previo a la llamada al método Delete().

Es decir, necesitamos tener la seguridad que dicho objeto se ha desligado de nuestra lista, previo a la
eliminacion de la cadena asociada al mismo. Y se hace necesario, l6gicamente y por el mismo motivo, un
bucle que recorra cada uno de los elementos, y proceda a dicha operacion, de tratarse de un borrado de
naturaleza global.

Que se de el error, en caso contrario, es tan solo cuestion de tiempo...

Parecida situacion y semejante codigo es el que se implementa en los métodos Clear() y Destroy(), que
llegados al punto actual, estamos obligados a observar.

Empecemos por el método Clear:

Para “limpiar” una lista de elementos, es decir, eliminar todos y cada uno de los elementos,
invocaremos al método Clear, que, por logica, no recibe parametro alguno:

Lo maés béasico de Delphi 3

Objetos Auxiliares IV

procedure TStringList.Clear;
begin
if FCount <> 0 then
begin
Changing;
Finalize (FList” [0], FCount) ;
FCount := 0;
SetCapacity(0) ;
Changed;
end;
end;

Como en anteriores métodos, no existe método mejor para optimizar un bucle que no recorrerlo y tan
solo deberemos ejecutar el bloque de rutinas en el caso de que el contador de elementos, tenga alguno. Por
dicha razén, evaluamos previamente la condicidon, y seguidamente efectuamos parecidas operaciones al
método de borrado, con la excepcidon de que ya no es necesaria la llamada al método System.Move, que se
ocupaba de desplazar el vector de cadenas.

Finalize(FList"[0], FCount);

Ha de realizar similar operacion salvo que en esta ocasion FCount,da lugar a que se libere la memoria
asociada a todo el vector y no solo a uno de los elementos, fijando la nueva capacidad a 0.

SetCapacity (0)

Recordemos que el método SetCapacity() era implementado mediante una llamada a la funcion
ReallocMem(). En este caso, siendo FList*[0] distinto de nil, primer pardmetro de la funcién, y 0 el valor
que retornaba NewCapacity * SizeOf(TStringltem), segundo parametro, ReallocMem dispondria del bloque
que referencia FList"[0] y fijaria su valor a Nil, eliminando el puntero.

procedure TStringlList.SetCapacity (NewCapacity: Integer) ;

begin
ReallocMem (FList, NewCapacity * SizeOf (TStringItem)) ;
FCapacity := NewCapacity;

end;

También estamos en condiciones de analizar el destructor de nuestra lista de cadenas:

destructor TStringList.Destroy;

begin
FOnChange := nil;
FOnChanging := nil;

inherited Destroy;
if FCount <> 0 then Finalize (FList”[0], FCount) ;

FCount := 0;
SetCapacity(0) ;
end;

Como era de esperar, la invocacion de este método sera necesaria al destruir definitivamente nuestro
objeto TStringList. Lo primero que debemos hacer es romper cualquier relacion del objeto con la
implementacion hecha por el usuario en los eventos a que hace referencias las variables FOnChange o
FOnChanging, asignando ambas variables a mil. Seguidamente, y aunque rompe el esquema usual de
cualquier destructor, es llamado el destructor heredado, que destruira su parte del objeto, quedando tan solo
por destruir el vector de elementos y que se hara en las mismas condiciones a las vistas en el procedimiento
anterior.

® Métodos de bisquedas en listas de cadenas

Lo maés béasico de Delphi 4

Objetos Auxiliares IV

Podemos necesitar, en algin momento concreto, obtener cierta informacion de un objeto de la clase
TStringList. En muchos casos, estara disponible para nuestro uso, en las propiedades publicadas del objeto,
es decir, aquellas que podemos acceder en tiempo de disefio mediante el inspector de objetos, o bien
mediante aquellos métodos publicos declarados. Este es el caso dos funciones: Find() e IndexOf(), de las
que obtendremos en tiempo de ejecucion, bien la existencia y el indice de una cadena a afiadir, bien el indice
asociado a la cadena en listas ordenadas/no ordenadas. Un poco liado para algo tan sencillo. Veamoslo con
mayor detenimiento:

Comentébamos al principio del articulo anterior, que la clase TStringList, era descendiente de TStrings,
a la que extendia nuevas funcionalidades, como lo era la capacidad de ordenar los elementos , las cadenas de
texto, que la integraban. TStrings ya poseia la capacidad de buscar de forma secuencial, un String dentro de
la lista de Strings, pero claro esta, mantener dicho método, sobre una lista ya ordenada era poco menos que
un derroche de recursos, por cuanto existen métodos que optimizan la bisqueda. Este es el caso de la
funciéon Find(), que deberd ser usada tnicamente sobre listas ordenadas, bajo responsabilidad del
programador el no hacerlo asi en el caso de realizar un invocacion directa del método. Nos podemos detener
un poco en la observacion de ambas :

function TStringList.IndexOf (const S: string): Integer;

begin
if not Sorted then Result := inherited IndexOf (S) else
if not Find(S, Result) then Result := -1;
end;

La funcién IndexOf() recibird como parametro la cadena de texto a buscar dentro de nuestro objeto
TStringList, y nos devolvera un indice que corresponde, si ha tenido €xito la busqueda, el lugar que ocupa
dicha cadena en la lista; si no ha tenido éxito, la funcidn se limitara tan solo a devolver -1.

Asi podemos entender que la condicién primera a evaluar sea si la lista estd ordenada o no. De no
estarlo, se invocara el método IndexOf(S) en el ascendiente, que se limitara a recorrer en un bucle for cada
una de las cadenas de la lista y evaluar si es igual a la pasada como parametro, y en el caso de no tener éxito
retornar -1 y en caso contrario el indice del elemento encontrado.

En el caso de estar ordenada nuestra lista de cadenas, invocamos al método Find():

function TStringList.Find(const S: string; var Index: Integer): Boolean;
var
L, H, I, C: Integer;
begin
Result := False;
L := 0;
H := FCount - 1;
while L <= H do
begin
I (L + H) shr 1;
C := AnsiCompareText (FList”™[I].FString, S);
if C < 0 then LL := I + 1 else
begin
H:=1 - 1;
if C 0 then
begin
Result := True;
if Duplicates <> dupAccept then L
end;
end;
end;
Index := L;
end;

1]
—

Lo maés béasico de Delphi 5

Objetos Auxiliares IV

Intentaremos razonar el algoritmo elegido por Borland, que esta dentro de los que se pueden considerar
como clasicos dentro de la busquedas en un vector ordenado. Su orden de complejidad, concepto al que
aludiamos en el segundo articulo de la serie, es del orden de logaritmo de n, razon de peso para considerarlo,
dada la ganancia obtenida en su ejecucion.

Consideremos dos variables de tipo entero A y B: La variable A sera para nosotros el valor del indice
del primer elemento del vector. La variable B representara el indice del ultimo elemento. Establecer un
bucle con extremos A y B, definido mediante For nos obligaria a recorrer todo el vector, desde el primer
elemento hasta el ultimo, en orden creciente o decreciente, manteniendo en su ejecucion un orden de
complejidad lineal tan solo aliviado por la posibilidad de una salida forzada mediante Exit. La estructura
While nos permitira modificar los pivotes A y B a medida que se ejecuta el algoritmo.

Veamoslo paso por paso:

Result := False;

Nos garantiza que al final del recorrido, de no haber sido encontrada la cadena de texto similar al string
que entregamos como parametro, devuelva False.

L
H

0;
FCount - 1;

Fijamos el valor del indice asociado al primer elemento de la lista (L) y al Gltimo (H).

while L <= H do

Representa las condiciones que garantizan la salida del algoritmo. Nos podemos hacer una idea que
supone que la busqueda es realizada en orden creciente, hasta que nuestro pivote (L) rebose la posicion (H).

I := (L + H) shr 1;

Dentro del cuerpo del bucle, va a ser una de las piezas fundamentales. Es una variable auxiliar que nos
devuelve un “punto medio” entre A y B. Nos va a servir para evaluar mediante la funcion
AnsiCompareText(FList"[1].FString, S) si en ese punto (I), la cadena asociada dentro de la matriz, al mismo,
con respecto a la cadena pasada parametro, devuelve valores 0, mayor o menor que cero.

Razonemos:

Si fuera igual a 0, ya habriamos encontrado la cadena y por logica, nos limitariamos a devolver dicho
indice y el valor True como retorno de la funcidn, dando por finalizado el algoritmo.

En el caso de ser menor que cero, significaria, dado que esta ordenado, que existe un valor por encima
del punto (I) que puede cumplir el algoritmo, puesto que todas las cadenas por debajo de ese punto no lo
cumplen. Asi, en el siguiente bucle, nos basta dar a la variable (A) el valor de (I+1), disminuyendo el rango
del vector, e iniciando un nuevo bucle de analisis con la generacion de nuevos puntos medios.

En el caso de ser mayor que cero, significaria, dado que estd ordenado, que existe un valor por debajo
del punto (I) que puede cumplir el algoritmo, puesto que todas las cadenas por encima de ese punto no lo
cumplen. Asi, en el siguiente bucle, nos basta dar a la variable (B) el valor de (I-1), disminuyendo el rango
del vector, e iniciando un nuevo bucle de analisis con la generacion de nuevos puntos medios.

Podemos resumir que la ganancia obtenida viene precisamente porque el rango del vector considerado
en la busqueda, es dividido por dos en cada ejecucion del bucle, de ahi su complejidad de orden logaritmo
de n (n representa el total de elementos que componen la lista)

Nos quedaban, con respecto al algoritmo, un matiz importante que debemos resaltar. Hubiera sido
posible, haber considerado una sentencia de salida intercalada en el bloque que cumple la condicion (C=0).
De haberlo hecho hubiera quedado tal que asi:

Lo maés béasico de Delphi 6

Objetos Auxiliares IV

if C = 0 then
begin
Result :=
Index:= I;
L:= I;
end;

True;

Esto hubiera sido posible y recomendable en una lista que no admitiera valores duplicados. Sin
embargo, la clase TStringList, permite su existencia y la funcion, devuelve el indice correspondiente al
primero de los duplicados en el caso de aceptarlos. En caso contrario, de no aceptar duplicados, el algoritmo
se detiene en el primero de los aciertos. Esto se consigue, avanzando la posicion del pivote (A) hacia (1),
mediante la rutina, :

if Duplicates <> dupAccept then L := I;
Resumiendo:

Es posible utilizar Find() sobre listas que acepten o no duplicados. Lo tinico que debemos tener en
cuenta es que, necesariamente, los elementos de la lista deben estar ordenados, pues de lo contrario, no hay
ninguna garantia de que obtenga éxito la busqueda iniciada. Si fuera necesario invocarlo directamente nos
basta con fijar la propiedad Sorted a true, pues internamente es llamado el método Sort();

® Método de ordenacidn en listas de cadenas

En el articulo 2 de esta serie, nos extendiamos, ampliamente, en el algoritmo utilizado por Borland para
efectuar una ordenacion sobre listas de punteros (TList). Hablabamos del algoritmo de QuickSort. Su
aplicacion al ordenamiento de listas de cadenas no lo hace diferente salvo en algiin matiz que ahora
comentaremos. En el listado 1, podéis ver la implementacion de dicho algoritmo.

Dicho esto, se puede entender que nos ciflamos tan solo a esos matices y que os remita al articulo 2 de
la serie para ver el desarrollo del mismo.

procedure TStringList.QuickSort (L, R: Integer; SCompare: TStringListSortCompare) ;
var
I, J, P: Integer;

begin
repeat
I :=1L;
J := R;
P := (L + R) shr 1;
repeat

while SCompare(Self, I, P) < 0 do Inc(I);
while SCompare (Self, J, P) > 0 do Dec(J);
if I <= J then
begin

ExchangeItems (I, J);

if P = I then

P :=J
else if P = J then
P :=1I;
Inc(I);
Dec (J) ;

end;
until I > J;
if L < J then QuickSort(L, J, SCompare) ;
Ih gs Ig
until I >= R;
end;

Listado 1. Algoritmo de ordenacion en listas de cadenas

Lo maés béasico de Delphi 7

Objetos Auxiliares IV

Nuestro punto de partida en la ejecucion de este método puede pasar simplemente por fijar la propiedad
booleana Sorted a True. No puede ser mas simple. La modificacion de dicha propiedad es hecha a través del
método SetSorted() que, tras comprobar que ha sido modificado su valor y solo en ese caso, llama al
método Sort en el caso de que estemos asignando a True dicha propiedad y almacenando el valor
internamente dentro de la variable FSorted, sobre la que lee el estado actual de la propiedad.

procedure TStringlList.SetSorted(Value: Boolean) ;
begin
if FSorted <> Value then
begin
if Value then Sort;
FSorted := Value;
end;
end;

La invocaciéon del método Sort inicia nuestro algoritmo de ordenacion y lo hace con una llamada al
procedimiento CustomSort(). Ambos, son declarados virtuales en la clase, lo que significa que pueden ser
sobrescritos por nosotros y posibilitindonos no solo la eleccion final del algoritmo mismo sino el criterio de
ordenacion elegido para hacerlo.

procedure TStringList.Sort;
begin

CustomSort (StringListAnsiCompare) ;
end;

La funciéon StringListAnsiCompare() es el criterio elegido por Borland para ordenar las cadenas y el
valor de retorno sera el resultado de evaluar la funcion AnsiCompareText declarada en la unidad SysUtils de
la VCL. Esta funcion, recibe como parametros los indices de los dos elementos a comparar, es decir, el lugar
que estan ocupando, lo que permite que pueda ser obtenidos ambos Strings y ser comparados. Tomemos S1
y S2 como la cadenas a comparar:

-Si S1 < S2 el valor de retorno serd menor que 0.
-Si S1 > S2 el valor de retorno serd mayor.

-Si s1 S2 el valor de retorno sera 0.
function StringListAnsiCompare (List: TStringList; Indexl, Index2: Integer): Integer;
begin
Result := AnsiCompareText (List.FList”[Index1] .FString,
List.FList”™ [Index2] .FString) ;
end;

Podemos comentar ademas, que dicha comparacién no sera sensible a mayusculas o mintsculas y se
realizara de acuerdo con los parametros locales fijados por Windows.

Fijémonos en como se ha implementado el método CustomSort(), responsable en ultima hora de
invocar el algoritmo de ordenacidn, y que nos dara pie a comentar el Gltimo de los matices que nos puede
resultar de interés.

procedure TStringList.CustomSort (Compare: TStringListSortCompare) ;
begin
if not Sorted and (FCount > 1) then
begin
Changing;
QuickSort (0, FCount - 1, Compare) ;
Changed;
end;
end;

Lo maés béasico de Delphi 8

Objetos Auxiliares IV

Cuando habldbamos de la clase TList, dejabamos claro que, siendo como era una lista de punteros, el
creador del algoritmo desconocia que criterio podria ser valido para ordenar unos objetos de los que tan solo
obtenia un puntero, dejando al programador la responsabilidad de implementar una funcién correcta.
Teniamos un ejemplo claro en las fuentes que se entregaban junto con el articulo. En esta ocasion, si que se
conoce la naturaleza de la lista, lo que permite ya establecer un criterio razonable. Y como ya he comentado,
al ser declarado virtual, lo hace flexible a poder ser modificado por nosotros para ser adaptado a problemas
concretos.

® Método de intercambio de elementosgs en ligtas de cadenas

En ocasiones, se puede hacer necesario intercambiar dos elementos en la lista de Strings, para lo cual
disponemos del método Exchange().

procedure TStringList.Exchange (Indexl, Index2: Integer) ;

begin
if (Indexl < 0) or (Indexl >= FCount) then Error (@SListIndexError, Indexl) ;
if (Index2 < 0) or (Index2 >= FCount) then Error (@SListIndexError, Index2) ;
Changing;
ExchangeItems (Indexl, Index2) ;
Changed;

end;

Este, descarga el peso de la implementacion en un procedimiento privado de la clase, limitandose tan
solo a comprobar que los indices que se obtienen como parametros, estan en el rango del vector, e
invocando antes y después de las modificaciones, los eventos de cambio. El corazon del intercambio lo
encontramos al analizar el procedimiento Excangeltems().

procedure TStringList.ExchangeItems (Indexl, Index2: Integer) ;
var

Temp: Integer;

Iteml, Item2: PStringItem;

begin
Iteml := @FList”[Indexl];
Item2 := @FList” [Index2];
Temp := Integer (Iteml”.FString) ;
Integer (Iteml”.FString) := Integer (Item2”.FString) ;
Integer (Item2”.FString) := Temp;
Temp := Integer (Iteml”.FObject) ;
Integer (Iteml”.FObject) := Integer (Item2”.FObject) ;
Integer (Item2”.FObject) := Temp;
end;

PStringltem es un puntero a un registro TStringltem. Este registro almacena un puntero al string y otro
puntero al objeto asociado. Ambas declaraciones, estan al inicio de la declaracion de la clase.

PStringlItem = “TStringItem;
TStringItem = record
FString: String;
FObject: TObject;
end;

Pero pongamos un ejemplo muy sencillo y bastante tonto, antes de intentar explicarlo: Supongamos dos
variables del tipo entero A y B y queremos intercambiar sus valores. Podriamos hacer
var

Temp: Integer;
A, B: Integer;

begin
A:= 10;
B:= 5;
Temp:= A;
B:= A;

Lo maés béasico de Delphi 9

Objetos Auxiliares IV

A:= Temp;
end;

Es exactamente lo mismo, con la diferencia de que en este caso no solo intercambiamos las cadenas
sino también los objetos asociados.

Queda quizds un poco mas claro que se hace necesario disponer de dos punteros, locales al
procedimiento, y una variable auxiliar, que nos permitan intercambiar el contenido. En el proceso se pueden
diferenciar 3 momentos distintos:

Momento 1: Obtenemos una referencia a cada elemento de la lista implicado.

Iteml := @FList” [Indexl];
Item2 := @FList” [Index2];

Momento 2: Intercambiamos las cadenas de texto mediante la variable auxiliar. Esta variable auxiliar
nos permite almacenar la direccion del primero de los punteros. Hecho esto, primero apunta a segundo, para
acabar recogiendo en el segundo elemento un puntero hacia el primero :

Temp := Integer (Iteml”.FString) ;
Integer (Iteml”.FString) := Integer (Item2”.FString);
Integer (Item2”.FString) := Temp;

Momento 3: Intercambiamos los objetos de igual forma:

Temp := Integer (Iteml”.FObject) ;
Integer (Iteml”.FObject) := Integer (Item2”.FObject);
Integer (Item2”.FObject) := Temp;

Creo que no es necesario extendernos.

Bésicamente, hemos visto los principales métodos que se declaran como publicos en la clase
TStringList, pero, si recordais como finalizdbamos nuestro articulo anterior, como descendiente de la clase
TStrings, también nos ofrecia capacidades menos conocidas y que, de alguna forma, estaban disponibles
para nuestro uso. Veremos estos aspectos en el apartado que abrimos a continuacidon y que servira para
cerrar finalmente el articulo actual.

Adelante pues...

Mas comentarios interesantes sobre TStrings y TStringL.ist.

Resulta menos conocida, o por 1o menos me lo parece a mi, la posibilidad de leer y escribir en cadenas
con formato [Nombre = Valor], propia de los ficheros de configuracion. No, no es casual que se haya dotado
a la clase TStrings de esta capacidad, si tenemos en cuenta la amplia polivalencia y compatibilidad que le
son inherentes. Era nuestro tema de discusion al finalizar el articulo anterior.

Ahora iniciaba la escritura de todas estds lineas y me preguntaba, al igual que te puedes estar
preguntando t0, si esta nueva capacidad iba a ser almacenada con procedimientos similares a la propiedad
matricial Items. No lograba ver con claridad, como iba a ser posible que hiciera esto de forma econdémica y
sencilla. Andaba ciertamente desorientado, pues buscaba en la parte privada del componente alguna pista
que me afirmase de forma certera aquellos pensamientos. Andaba errado.

En realidad, no hay mayor economia que una buena “plantilla”. Olvidémonos en este momento del
segundo miembro de la igualdad y centrémonos en el primero de ellos. Analicemos la propiedad Names:

property Names [Index: Integer]: string read GetName;

Lo maés béasico de Delphi 10

Objetos Auxiliares IV

Como podéis ver es un propiedad matricial de solo lectura y la hace mediante la funcion GetName(). Si
a esto anadimos que a través de la propiedad Values pueden ser gestionados los valores en la parte derecha
de la igualdad. ;Cual puede ser entonces la funcionalidad de la propiedad Names?

Antes de responder a esa pregunta, tenemos que interesarnos por una pieza que nos falta en este
pequefio puzzle, y que es el método protegido Get().

function TStringList.Get (Index: Integer): string;

begin
if (Index < 0) or (Index >= FCount) then Error (@SListIndexError, Index) ;
Result := FList”[Index].FString;

end;

La funcion Get() es un método protegido, declarado como abstracto en la clase TStrings. Esto nos
manifiesta que tan solo los descendientes de dicha clase van a poder redefinirlo. En realidad lo tinico que
hace TStrings es decir a sus descendientes: “- Vuestra mision es devolver la cadena de texto asociada al
indice. Me da igual donde la almacenéis y como lo hagais. Yo lo tnico que quiero es dicha cadena...”

Y en esa tesitura se encuentra nuestro descendiente TStringList. El si que sabe donde esta la cadena de
texto asociada al indice y después de comprobar si esta dentro del rango del vector, resuelve el puntero al
vector en el miembro que almacena la cadena (FString).

Ahora ya estamos en condiciones de entender la lectura de la propiedad Names:

function TStrings.GetName (Index: Integer): string;
var

P: Integer;
begin

Result := Get (Index) ;

P := AnsiPos('=', Result);

if P <> 0 then
SetLength (Result, P-1) else
SetLength (Result, 0);
end;

Cuando se produce la lectura es recibido el parametro del indice de la cadena de texto. Si decimos:

MiVariableString:= MilLista.Names[1];

Le estamos diciendo a nuestro objeto MiLista, perteneciente a la clase TStringList, que nos entregue el
valor asociado a la segunda cadena del vector. Este objeto, como descendiente de TStrings que es, busca en
su método GetName() para obtener dicho valor.

Si la funcién Get() ha tenido éxito el valor de retorno ya contiene dicho String. Ahh... Pero a nosotros
no nos interesa todo el String sino solo la parte izquierda de la igualdad por lo que:

a/ si en dicha cadena no existiera el caracter ' ="' que es buscado mediante AnsiPos(), SetLength() nos
devolveria una cadena vacia.

b/ si existiera dicho caracter, en P estaria la posicion que ocupa, por lo que, SetLenght() reajusta
nuestro String para retornar una subcadena hasta la posicion anterior al caracter.

Repetimos la pregunta: ;Cual puede ser entonces la funcionalidad de la propiedad Names?

Ahora podemos dar una respuesta: Como propiedad matricial que es, nos permitira recorrer el vector y
localizar aquellos valores que se hayan a la izquierda de la igualdad, empleando bucles con estructuras
habituales para tal efecto, apoyandose en los valores Cero para el primer elemento y Count -1 para el ultimo
en el caso de querer recorrer todo el vector (hay que tener en cuenta que el resto de métodos de busqueda
estan implementados para localizar todo el String y no solo la parte izquierda de la igualdad).

Lo maés béasico de Delphi 11

Objetos Auxiliares IV

Y la parte derecha que...!!!!!

Ahora nos resulta mucho mas facil poder comprender esta propiedad, con sus métodos de escritura y
lectura respectivos:

property Values |[const Name: string]: string read GetValue write SetValue;

Para verlo con claridad imaginemos que tenemos esta cadena asociada al indice 2:

MiIDEPreferido = Delphi

Si en el transcurso del programa yo quisiera saber cual es mi entorno de trabajo preferido me bastaria
con llamar a la propiedad Values:

MiString:= MilLista.Valuesg['MiIDEPreferido'];

Cuando MilLista recibe la orden nuestra de devolver dicho valor, invocard la funcion GetValue para
poder obtenerlo.

function TStrings.GetValue (const Name: string): string;

var
I: Integer;
begin
I := IndexOfName (Name) ;
if I >= 0 then
Result := Copy(Get(I), Length(Name) + 2, MaxInt) else
Result := '';
end;

function TStrings.IndexOfName (const Name: string): Integer;

var
P: Integer;
S: string;
begin
for Result := 0 to GetCount - 1 do
begin
S := Get (Result) ;
P := AnsiPos('=', S);
if (P <> 0) and (AnsiCompareText (Copy (S, 1, P - 1), Name) = 0) then Exit;
end;
Result := -1;
end;

Listado 2. Funcion de busqueda por nombre en el formato [Nombre=Valor]. Como valor de retorno
recibimos la posicion que ocupa la cadena de texto entregada como parametro. En el caso de no ser
localizada recibiremos el valor -1, habitual en este tipo de funciones.

Si observais el listado 2, la evaluacion de la funcion IndexOfName() depositara sobre la variable I el
resultado de la busqueda para poder ser evaluado:

a/ si ha devuelto -1 retornara una cadena vacia.

b/ cualquier valor mayor o igual a cero, nos devolvera solo la parte derecha de la igualdad ya que de
toda la cadena resultante de la invocacion de Get(), tan solo nos vamos a quedar una subcadena que cuyo
inicio se fija en la longitud del parametro (Name) + 2 (es decir, a partir del caracter siguiente al '=").

De forma similar se produce la escritura sobre la propiedad Names:

procedure TStrings.SetValue (const Name, Value: string);

Lo maés béasico de Delphi 12

Objetos Auxiliares IV

var
I: Integer;
begin
I := IndexOfName (Name) ;
if Value <> '' then
begin
if I < 0 then I := Add('"');
Put (I, Name + '=' + Value) ;
end else
begin
if I >= 0 then Delete(I);
end;
end;

Cuando el método SetValue() recibe los parametros Nombre y Valor, lo primero que va a hacer es
buscar que posicion ocupa en el vector de cadenas, previo al analisis del valor que deba asignar a la misma.

El resto no tiene mucha mas dificultad. En el caso de que intentdramos asignar una cadena vacia, toda
vez que ha sido localizada en la lista de cadenas, entiende que queremos eliminarlo de nuestra lista.

En el caso contrario, que estemos intentando asignar una cadena no vacia, lo primero que hace es: si no
existe, afiadir un elemento para obtener el indice correcto, y en cualquier caso, copia en el elemento
correspondiente al indice I el formato [Nombre =Valor].

Pero también decias algo de un texto...

Comentabamos en el nimero anterior, como nuestros objetos descendientes de TStrings eran capaces de
devolvernos en un solo String el contenido de todas sus lineas, intercalando entre ellas los retornos de carro.
No lo vamos a analizar. Creo que después del analisis hecho a los métodos de escritura y lectura en la
propiedad Values, nos facilitan claramente su entendimiento.

property Text: string read GetTextStr write SetTextStr;

function TStrings.GetTextStr: string;
var
I, L, Size, Count: Integer;
P: PChar;
S: string;
begin
Count := GetCount;
Size := 0;
for I := 0 to Count - 1 do Inc(Size, Length(Get(I)) + 2);
SetString (Result, nil, Size);
P := Pointer (Result) ;
for I := 0 to Count - 1 do
begin
S := Get(I);
L := Length(S);
if L <> 0 then
begin
System.Move (Pointer (S) ", P*, L);
Inc (P, L);
end;

end;
end;

procedure TStrings.SetTextStr (const Value: string);

Lo maés béasico de Delphi 13

Objetos Auxiliares IV

var
P, Start: PChar;
S: string;
begin
BeginUpdate;
try
Clear;
P := Pointer (Value) ;
if P <> nil then
while P* <> #0 do
begin
Start := P;
while not (P* in [#0, #10, #13]) do Inc(P);
SetString (S, Start, P - Start);
Add(S) ;
if p*
if P*
end;
finally
EndUpdate;
end;
end;

#13 then Inc(P);
#10 then Inc(P);

Listado 3. Métodos de escritura y lectura sobre la propiedad Text.

Mirad el listado 3. Bésicamente es lo mismo. La lectura de la propiedad Text ha de entregar un String
que contenga todas las cadenas de la lista y puesto que éstas estan almacenadas en el vector, debera leer del
mismo secuencialmente cada una de ellas e ir incrustandolas en dicha cadena. Creo que no es excesivamente
importante el modo en el que lo hace para nuestro efectos.

Para la escritura sucede lo mismo. Nuestra lista recibird en un solo String todas las cadenas que
componen el vector de listas y se vera obligado a diseccionar cadena a cadena, tomando como referencia
#13 y #10 como fin de cadena, y salvandolos finalmente y en el orden correcto en el vector. Tampoco creo
que merezca detenernos demasiado y el Uinico comentario que haré sera en resaltar que, previa a la escritura
es invocado el método Clear, y ya sabéis que significa esto: cuando escribamos sobre Text, el contenido de
mi objeto lista desaparecera si el resultado de la escritura tiene éxito.

Creo que se entiende ahora la gran polivalencia que ofrece la clase Strings, como miembro de otro
objeto.

Para el proximo numero...

Nuestro proximo nimero serd eminentemente practico y veremos los dos ultimos objetos auxiliares de
la serie: las clases TStack y TQueue. Ademas, intentaremos que todo lo visto hasta el momento se plasme a
través de algiin pequefio ejemplo.

Vale... no me enrollo mas. ;-)

Recibid un saludo y hasta ahora...

Lo maés béasico de Delphi 14

