Salvador Jover — mailto:s.jover@wanadoo.es

Objetos Auxiliares V

¢Quién dijo que este era el ultimo capitulo de la
serie...?. ¢{Seguro que fui yo...? :-)

En el capitulo anterior, nos despediamos con la promesa de que éste, que ahora inicias la lectura, fuera
un articulo realmente préctico. Después de los cuatro primeros, en los que hemos intentado escudrifiar, con
la mayor profundidad posible, las fuentes de la VCL, y en concreto las clases que Borland mismo engloba
como clases auxiliares, era hora ya de intentar resumir en un ejemplo muy bésico, algunos de los aspectos
importantes sobre los que ha girado la serie. Y por cierto, hoy tampoco vamos a ver las dos clases que nos
faltan: TStack y TQueue. Ni siquiera, pienso, que puedan ser abordables en el pr6ximo :-) De haberme
conformado con la escritura de una veintena de lineas de codigo, suficiente para saber como es aplicado un
método determinado, quedaria zanjada nuestra pequefia aventura, puesto que las clases que nos faltan por
comentar, y que responden a los TDAs (Tipo de Datos Abstractos) Pila 'y Cola, son realmente sencillas, toda
vez que nos hemos introducido anteriormente en la clase TList.

He intentado llegar un poco mas lejos con el ejemplo que vamos a comentar. La idea que mueve, 0
digamoslo de otra manera, la moraleja que se esconde tras estas pequefias lineas que compartimos, es que
podemos apoyarnos a menudo en estas clases mas de lo que lo hacemos. Pueden formar parte de aquellos
objetos que construyamos, extendiendo la funcionalidad de los mismos. Quiero decir con todo esto, que al
finalizar esta serie, el ejemplo ya no es importante si no sales realmente convencido de que puedes sacar
partido a todos estos objetos que hemos ido viendo en cada uno de los articulos. El ejemplo en si no es nada.
Obviaremos detalles que en un desarrollo real deberiamos tener en cuenta, tales como el uso de librerias
dindmicas, (sin ir méas lejos, las imagenes que contienen algunos de los botones forman parte de nuestro
ejecutable, o las propias cadena literales que rotulan cada uno de los botones), tratamiento mas serio de la
captura o lanzamiento de excepciones y muchos mas aspectos que nos alejarian de lo que realmente se
pretende con la implementacion.

Dicho todo esto, creo que vale la pena que nos metamos en harina, como se suele decir en mi pueblo... o
mas aun: que nos dejemos de gaitas y vayamos al grano...

La historia...

Es una verdadera tortura plantear un articulo como éste, sin un buen ejemplo. Finalicé el anterior y, tras
unos dias de descanso, inicié la planificacion del que ahora nos encontramos. No se me ocurria nada
realmente interesante, que me pudiera motivar. Bueno si, pequefios ejemplos como los que compartimos en
el segundo de los capitulos, a raiz de los métodos Sort y Assign en la clase TList. Y fueron pasando los dias.
Y por fin, en esta Gltima semana, con la fecha de entrega “pisdndome los talones”, surgié un pequefio rayo
de luz (pequefiito).

En Espafia, en estos momentos, andamos de cabeza con el dichoso Euro. Digo esto porque sé que la
revista es leida por un amplio sector de personas fuera de Espafia, y mas concretamente de Hispano-América
y quizaés se sientan algo ajenos al problema. El caso es, que también existen empresas pequefias... No todas
las empresas son grandes y robustas y también las hay menudas, que mantienen contra viento y marea
sistemas tradicionales de pago, como lo es y ha sido el de efectivo.

Lo més basico de Delphi 1

mailto:dejover@eresmas.com

Objetos auxiliares V

En esas premisas, desafiando a aquellas que han mecanizado sus sistemas de pago a través de medios
informéticos, perdura un tipo de empresario que paga semanalmente y al contado. Es una raza a extinguir.
Sus oficinas suelen tener un ritmo endiablado en los dias de pago: el teléfono no para de sonar, hay que
subir al banco a recoger el efectivo (cambio) necesario para efectuar los pagos de la semana, los salarios de
los trabajadores, los proveedores... todos quieren cobrar.

El administrador espera de pies, mirando de reojo a un administrativo que suda la gota gorda haciendo
calculos y célculos... para acabar diciendo: -Pues jefe... hace falta... (y replica el jefe)

-iiMira Manolo, que la ultima vez te quedaste corto... !!

(dejémoslos discutiendo, ahora que ya sabéis un poco de la historia)

...Y los hechos.

Vamos a intentar ayudar un poco a nuestro acalorado administrativo y crearemos una pequefia utilidad
que le haga mas llevadera la vida, facilitindole el proceso de calculo del cambio necesario para los pagos.
Vamos a crear un pequefio Conversor de Cambio.

El proceso de disefio de nuestra “Utilidad” es quiza lo mas importante de todo el proyecto y a lo que
realmente debemos dedicar la mayor parte del tiempo invertido. Quiero decir que debemos sentarnos y
emborronar cuantas hojas hagan falta hasta saber que es lo que queremos exactamente.

Analicemos:

La unidad monetaria actual que
ha adoptado la Comunidad Europea —
es el Euro, como bien es sabido. Lo Menu
que quizas no sea tan conocido desde Zona para los totales. Podemos valernos
otras comunidades, es que con su también de un TStringGrid
implantacion los europeos
dispondran de un total de 8 monedas
y 7 billetes distintos para hacer
efectivos sus pagos. A saber: tenemos
billetes de 500, 200, 100, 50, 20, 10,y
5 Euros, y monedas de 2, 1 Euro y 50, Destinamos este espacio para mostrar los
20, 10, 5,2,y 1 Céntimo. (Manolo, resultados parciales (los elementos de nuestro
nuestro acalorado administrativo TStrings). Las visualizaremos a traves de un
continua con sus calculos... y su jefe SOEPIDINE 10 L0 EaEs EHnmen:
de pie, mirandole con cara de muy
pocos amigos.) |

Barra de Estado |

Sabido este detalle vital (15
opciones que van a poder ser elegidas, . .
simultaneas), nos interesa tener una Figura 1: Borrador que representa el interfaz de la
lista en el que se detallen por un lado utilidad de conversion
el concepto al que corresponde y por
otro lado el valor sobre el que hay que
calcular el desglose. Un ejemplo: “Pago al Electricista.........c..cc.c......... 100°72 Euros”. Aqui podemos dar
entrada a nuestra clase TStrings, que sera la que almacene el CONCEPTO en cada una de estas cadenas.

Lo més basico de Delphi 2

Objetos auxiliares V

Elegido un tipo de desglose, comln a todos los pagos, nos limitaremos a recorrer la lista y a calcularlo
individualmente, obteniendo al final de la misma, mediante un sistema de acumulados, los totales necesarios
correspondientes a cada una de las monedas. Y aqui podemos introducir otra de las propiedades vistas y que
dejamos al estudio de este ejemplo: la matriz Objects, que nos va a permitir asociar a cada cadena una
estructura de tipo Record (TEuro), que contiene:

TEuro = record
VEur os: Doubl e;
VRest o: Doubl e;
T1Centino, T2Centinos, T5Centi nos, T10Centi nos, T20Centi nos, T50Centi nps,
T1Eur o, T2Euros, T5Euros, T10Euros, T20Euros, T50Eur os,
T100Eur os, T200Eur os, T500Euros: TNbneda;
end;

En realidad, y siguiendo las recomendaciones
habituales de los libros sobre POO, Mario Rodriguez (otro

componente del grupo albor que de sobra conocéis) me DZ.D@%E:R?E@ []
comentaba con mucha razon, que podriamos abordar el L

problema mediante la creacion de clases nuevas que | |
respondan a cada una de las abstracciones. La creacion de
una clase tiene mayores ventajas sobre el uso de registros. m

Eso esta bastante claro. Un objeto, es capaz de relacionarse
con su entorno, con otros objetos a través de sus métodos.
Un registro no. Una estructura del tipo Record, puede ZONA DE
almacenar la informacion que necesitamos pero nada hay VISUALIZACION
que nos garantice que aquello que contiene sea coherente.
Un ejemplo: Imaginemos un registro que nos permitia
almacenar una fecha. ¢Existe algo que nos garantice que no
pueda tomar valores tales como el 31 de Febrero?. Sin
embargo, para facilitar el desarrollo de este pequefio
ejemplo que vamos a ver, elegiremos el registro, reservando Figura 2: Borrador que representa el
dindmicamente la memoria necesaria, y liberandolo interfaz de nuestro pequefio editor
finalmente, cuando ya no sea necesario.

Asi pues, ya nos podemos hacer una idea del interfaz gréafico, y lo perfilaremos a grandes rasgos, como
se puede ver en la figura 1. Esa sera la ventana principal de nuestra ” utilidad ”, que no tiene porque
coincidir, por obligacion, con la ventana principal de nuestra aplicacion. Podemos imaginar por ejemplo,
gue sea una mas de las opciones dentro de otra aplicacion de gestion.

Por otro lado, vamos a necesitar un método de introduccion de datos: podemos servirnos del
componente TStringGrid del que hablabamos en la figura 1, que hubiera sido quizas lo mas practico, o lo
mas intuitivo. No lo vamos a hacer asi. Crearemos un pequefio editor. Esto nos va a permitir ver con mas
detenimiento las posibilidades de dos de las propiedades comentadas en el articulo anterior: Names y
Values. Es decir, implementaremos los controles necesarios para navegar entre los registros y editar, insertar
o modificar respectivamente, tal y como lo hiciéramos desde el TDBNavigator (eso si, mas casero).

Esbozamos una pequefia ilustracion tal cual la figura 2.

Vamos a comenzar nuestro trabajo con este pequefio editor.

Un pequefio editor para nuestro Conversor.

Nuestro editor, al que hemos llamado (TfrmDatos), es una ventana que serd invocada al pulsar con un
doble click sobre una de las filas (registros) del componente TStringGrid de la figura 1. EI que esté en la

Lo més basico de Delphi 3

Objetos auxiliares V

parte inferior. Nos olvidaremos de momento del hecho, de que, a su creacion, deberia obtener todas las
cadenas del Conversor y de que, previo a su destruccion, deberia también actualizar el Conversor con la
nueva lista de cadenas para que éste realice los calculos oportunos.

De hecho, ahora partiremos de la premisa de que nuestro editor contiene al momento de su invocacion
Cero (0) elementos y de que, a su destruccion, no hace nada. Hemos reducido, por decirlo de alguna forma,
la dimension de nuestro problema original, para hacerlo un poco mas asequible. Se limitara a insertar, editar
0 borrar elementos de la lista de cadenas, y podra navegar al primero, anterior, posterior y Gltimo de los
registros.

Necesitamos un objeto que se responsabilice de almacenar cada una de las cadenas del editor. Para ello,
nos apoyamos en un objeto descendiente de la clase TStrings como lo es Listatemp (TStringList). En este
caso, podemos hacer uso de la funcionalidad que nos brindan las propiedades Names y Values, y construir
cadenas del tipo 'CONCEPTO=VALOR', que podran ser leidas por nuestro objeto, permitiéndonos obtener
respectivamente, el concepto o el valor, seglin sean necesario lo uno o lo otro.

function TfrnDatos. Si tuarse(lndexl, | ndex2: Integer):String;

begin
if index2 > 0 then
begin
case indexl of
0: Resul t: = |istatenp. Nanes[i ndex2-1];
1: Result: = listatenp. Val ues[|i statenp. Nanes[index2-1]];
end;
end
el se
Result:="'";
end;

Queda claro, ¢no?. Imaginemos una cadena de caracteres tal que: 'Fra. de Moisés=43,56". Invocada la
funcion Situarse(), y pasado como parametro de la misma Index1 = 0, el selector CASE producira que el
valor de retorno sea una cadena que contenga: 'Fra. de Moisés'. Si invocamos la funcion, siendo 1 el valor
del parametro Index1, ha de devolver la parte derecha de la igualdad. Index2 sera nuestro selector de
registro.

Es decir, si nos vamos a valer de la clase TStrings para almacenar cadenas con el formato
CONCEPTO=VALOR, necesitaremos mantener un indice que nos recuerde en que posicion del array nos
encontramos. Ese indice lo vamos a llamar itemindex, un poco por analogia con el indice existente en la
propiedad items de componentes como TListBox.

¢Qué més nos puede hacer falta?... Vamos a ver.... Una variable que almacene el estado actual: si
estamos navegando, insertando o editando un registro e incluso si esta inactiva porque no contiene todavia
elemento alguno.

TEstado = (eslnactivo, esNavegar, esEditar, eslnsertar, esBorrar);

Y poco mas. Algunos procedimientos que nos permitan mantener coherentes la transicion de estados,
impidiendo por ejemplo que podamos borrar un registro que no haya sido previamente validado. Todo esto
lo iremos explicando a lo largo del articulo.

Lo tenéis con mayor detalle en el listado 1

Lo més basico de Delphi 4

Objetos auxiliares V

type
/1 Defini nbs | os posi bl es estados que permitinos
TEst ado = (eslnactivo, esNavegar, esEditar, eslnsertar, esBorrar);

Tf rmDat os = cl ass(TForm

private
Li statenp: TStringList;
Item ndex: |nteger; /1 nos inventanos un indice para novernos
Est ado: TEst ado; /'l necesitanbs una variabl e que al macene el estado actual

function Situarse(lndexl, | ndex2: Integer):String;

procedure ActualizarEstado(index: Integer);

procedur e Estadol nici al ;

procedur e HazEdi ci on;

procedur e Hazl nserci on;

procedur e HazNavegaci on;

procedur e HazCancel aci on;

procedur e Copi aTabl a(i ndex: integer);//copia |la tabla a partir de un indice
public

end;

Listado 1. Metodos que declara la clase TfrnDatos (nuestro editor)

He intentado que la interfaz sea lo mas clara posible, que estén lo mas diferenciados posibles cada uno
de los estados, y mas concretamente la situacion activo/no activo de los controles que permiten tanto la
manipulacién de datos como los que facilitan la navegacién, rétulos informativos de situacion, etc...

Vamos a construir un interfaz gréafico que contenga todos los elementos descritos hasta el momento. En
la figura 3 puedes ver el interfaz, ya en el proceso final de depuracion del editor, mientras comprobaba que
respondia basicamente a lo solicitado por nosotros.

Creacion y destruccion de la ventana frmDatos.

Nuestra premisa era que partiamos, inicialmente, de una lista vacia. Por ello, en nuestro procedimiento
de creacion de la ventana, nos limitamos a crear un descendiente de la clase TStrings.

Toda vez que ha sido creado, y ajustada la cabecera de la tabla inferior (nos referiremos asi cuando
hagamos mencién del componente TStringGrid de la figura 3), inicializamos el estado de aquellos controles
que mantienen valor constante. No es el caso de los controles de Navegacion que varia su activacion
dependiendo no solo del estado sino también de la posicion del registro. Para solventar esta situacion, hemos
implementado el procedimiento ActualizarEstado() en el que se tiene en cuenta la posicion del registro.

procedur e TfrnDatos. Ti mer 1Ti ner (Sender: TCbj ect);

begin
i f not edi_Texto. Enabl ed then edi _Texto.color:= cl Gay
el se edi _Texto. color:= cl Wndow,
i f not edi_Val or. Enabl ed then edi _Val or.col or: = cl Gay
el se edi _Val or. col or: = cl Wndow,

end;

Por altimo, el procedimiento de reloj, aqui tiene un uso casi anecdotico. Se limitara a modificar el
color de las dos casillas de edicion, advirtiéndonos de aquellos momentos en que su valor Enabled es false,
es decir, estan desactivadas (cuando no hallan registros por ejemplo).

Lo més basico de Delphi 5

Objetos auxiliares V

procedur e TfrnDat os. For nCr eat e(Sender: TOhj ect);
begin
//Creanps |la lista de cadenas sobre |a que vanps a trabajar

listatenp: = TStringlList. Create;
stg_Tabla.Cells[0,0]:=" CONCEPTO ;
stg_Tabla.Cells[1,0]:=" VALCR ;

Est adol ni ci al ;
Ti mer 1Ti ner (Ti mer 1) ;
end;

A la destruccidn del formulario, haremos lo propio con la lista de cadenas.

procedur e TfrnDat os. For mDestroy(Sender: TChject);
begin

| i statenp. Free;

end;

Podemos analizar cual es el estado inicial de partida: Itemindex, dado que no existe cadena alguna en
nuestro editor, toma como valor ‘cero’ Y todos los controles de nuestra ventana se hallan desactivados o
inicializados a false. Todos menos uno. EI botén que implementa la capacidad de afiadir un registro a
nuestro editor (nuevo) se halla activo. Este sera nuestro estado de partida.

procedur e TfrnDat os. Est adol ni ci al ;
begin
/1 Defininobs el estado valido inicial
estado: = eslnacti vo;
item ndex: = 0; //todavia no existe ningln registro en nuestro editor
/linicializanmps |las etiquetas informativas del estado actual
| ab_Cont ador. Caption:= "'0/0";
| ab_Est ado. caption:="'SI N REA STRCS' ;
/linicializanps | os cuadro de edici 6n de entrada de registros
edi _Texto.text:="";
edi _Text o. Enabl ed: = fal se;
edi _Valor.text:="";
edi _Val or. Enabl ed: = fal se;
/linicializanos |os control es de navegaci 6n
spb_Primero. enabl ed: = fal se;
spb_Anterior. enabl ed: = fal se;
spb_Posterior. enabl ed: = fal se;
spb_Ul tino. enabl ed: = fal se;
/linicializanos | os control es de manipul aci 6n de dat os
bi b_Nuevo. enabl ed: = true;
bi b_Val i dar . enabl ed: = fal se;
bi b_Borrar. enabl ed: = fal se;
end;

Primero, anterior, posterior y ultimo.

Antes de iniciar la explicacion te aclaro un pequefio matiz: itemindex sincroniza la posicion del registro
en nuestro TStringList (lo visualizas a través de las casillas de edicion), con la posicion del foco en la tabla
inferior, que nos da una vista global de los registros existentes. La navegacion se produce con sincronia ya
que tanto para movernos sobre la tabla, como para hacerlo sobre el array, nos apoyamos constantemente en
el valor de la variable itemindex (indica la posicién que ocupa el registro activo). Esto es quizas, uno de los
aspectos mas importantes que encierra la aplicacion. Itemindex es la referencia que toman tanto la tabla
inferior como la lista de cadenas para sincronizar su posicion.

El primer y ultimo de los registros apenas tienen dificultad:

procedure TfrnDatos. spb_Prinerodick(Sender: TObject);
begin

Lo més basico de Delphi 6

Objetos auxiliares V

item ndex: = 1;
edi _texto.text:= Situarse(0, item ndex);
edi _valor.text:= Situarse(l1, item ndex);
stg_tabla.row = 1;
Actual i zar Est ado(i t em ndex)

end;

procedure TfrnDatos. spb_U tinoCdick(Sender: TCbject);
begin
item ndex := listatenp.count;
edi _texto.text:= Situarse(0, item ndex);
edi _valor.text:= Situarse(1, item ndex);
stg_tabla.row = stg_tabl a. RowCount - 1;
Act ual i zar Est ado(i t em ndex) ;
end;

Su estructura es semejante y se limitan a situarse, respectivamente en el primer y ultimo registro,
sincroniza tabla y array, y actualiza estado de controles de navegacién por posicion de registro.

Por otro lado, si analizamos anterior y posterior:

procedure TfrnDatos. spb_AnteriorCick(Sender: TOoject);
begin
if itemindex > 1 then
begin
edi _texto.text:= Situarse(0, item ndex - 1);
edi _valor.text:= Situarse(l, item ndex - 1);
item ndex := item ndex - 1;
stg_tabla.row = item ndex;
Actual i zar Est ado(i t em ndex) ;
end;
end;

procedure TfrnDatos. spb_Posteriordick(Sender: TObject);
begin
if itemindex < listatenp.count then
begin
edi _texto.text:= Situarse(0, item ndex + 1);
edi _valor.text:= Situarse(l, item ndex + 1);
item ndex := item ndex + 1;
Actual i zar Est ado(i t emi ndex) ;
stg_tabla.row = item ndex;
end;
end;

Concluiremos que aun siendo similar a los dos primeros, se necesita comprobar que no se halla ni en la
primera ni en la ultima posicion, para no generar una excepcion al salirse del rango de la matriz de cadenas.
Anterior decrece en una unidad itemindex, mientras que posterior la incrementa.

Ahora bien, hemos comentado que habia una sincronia entre la tabla y nuestro componente TStringList.
Hasta este momento, la pulsacion de los botones: primero, anterior, posterior y ultimo, la establecia. Al
contrario, desde la pulsacion de un simple Click de seleccion en la tabla, existe también sincronia con la
posicion actual de itemindex sobre la lista de cadenas. En la implementacion del método stg_TablaClick (es
decir al seleccionar una de las filas):

itemindex:= stg_tabla.Row;

es la rutina de asignacion que la garantiza.

procedure TfrnDatos. stg_Tabl all i ck(Sender: TOhject);
begin
/lsolo en el caso de que haya al gin el emento, este enfocado y en estado

Lo més basico de Delphi 7

Objetos auxiliares V

/1 de navegaci 6n
/1 ES MJY | MPORTANTE ESTA ULTI MA RESTRI CCl ON
if (item ndex > 0) and (stg_tabl a.focused) and (estado = esNavegar) then
begin
i tem ndex: = stg_tabla. Row, //actualizanps el indice
edi _texto.text:= Situarse(0, item ndex); //obtenenbs |os valores
edi _valor.text:= Situarse(l, itemn ndex);

HazNavegaci on; //Hala... otra vez a navegar
Actual i zar Est ado(i t em ndex) ;
end;

end;

Es importante que tan solo se ejecute el cuerpo del procedimiento en el estado de Navegacion, pues de
encontrarnos en un estado diferente o ejecutarse en un estado de inactividad (itemindex = 0), generaria bien
un cambio de estado (rompiendo el diagrama de estados), bien una excepcion al salir del rango de la matriz.

Afadir, editar o borrar un registro.

Deberiamos tener en mente a estas alturas Introduccion de Datos P =T
que la adicion, edicion, cancelacion o borrado de .
un registro, llevaria aparejada una transicion de K4 Byl _Sveer | dbviewo | mgorer |
estado,(es_n_elcesario haber disefiado un esquema CONCEPTO [Factura Electicista Paco Rubio
de transicion de estados, aunque fuera L T — -
garabateado, como lo hacemos rapidamente en la NAYEGACION
figura 4). Este diagrama nos permite valorar en — —
gue medida se cumplen los objetivos que | |
queremos Salario de Juan Montafiez (Enera) 200.24

Salario de Pero Murcia (Enero) 300.50

ctura Electricista Paco Rubio 500.23

Podemos describir el planteamiento
propuesto en el diagrama:

Fagar a la papeleriz 45,6

Partimos de un estado inicial eslnactivo.
Cualquier intento de adquirir un nuevo estado
debe pasar obligatoriamente por la adicion de un
nuevo registro, que nos mueve hacia el estado
eslnsertar. Iniciado este estado, bien puede
suceder la validacién del mismo, que nos llevaria . . .
al estado esNavegar, o la cancelacién de la Figura 3: Intgrfa_z gréfico de nuestro editor al
insercion, que nos regresaria al estado de partida. finalizar el desarrollo
A partir de ese momento, el estado esNavegar se
convierte en el centro de referencia, manteniendo
una independencia entre los tres estados principales sobre los que se sostiene el editor: eslnsertar, esEditar
o esBorrar.

Asi pues, para pasar a estado de insercién, nos valemos de la pulsacion del botén cuyo caption es
‘Nuevo' y que se acompafia del signo de la suma. Ademas, permitimos que la pulsacion de dicha tecla
acarree la invocacion del método de adicion.

procedur e TfrnDat os. bi b_Nuevod i ck(Sender: TChject);

begin
Hazl nsercion; // Premaranos el estado de | os controles que intervienen
item ndex:= listatenp. Add('='); //Creanps una nuevo el enento en nuestra lista

/1Si hay uno o nas el enentos antes de | a pul saci 6n

[/ Aunent anbs en una fila nuestra tabla StringGid

{Not ese que el nétodo Add ya nos situa en el Ultinmp elenento de la lista
pero conb no existe dicho nétodo desde | a tabla, debenbs fingirlo}

Lo més basico de Delphi 8

Objetos auxiliares V

if item ndex > 0 then
begin
stg_tabl a. RowCount: = stg_Tabl a. rowcount + 1
stg_tabl a.row =stg_tabl a. RowCount - 1;
end;
stg_tabl a. Enabl ed: = fal se;//desactivanps la tabla
Inc(item ndex); // nos situanps correctanente ya que el nétodo add nos
/'l devuel ve | a posicién dentro de la matriz que es sienpre
/1 menor en un elenmento, tal conmp ocurre cuando hacenobs un
//bucle for para recorrerla: (count-1)
edi _texto.Text:="";
edi _valor.Text:="'0,0";
edi _texto.enabl ed: = true;
edi _val or. enabl ed: = true;
edi _texto. Set Focus; //enfocanps |la casilla de edici én CONCEPTO
end;

El procedimiento Hazlnsercion nos prepara la transicion al estado de insercién (eslnsertar). Su
invocacion afecta a aquellos controles que tienen un comportamiento constante ante dicho estado. Afiadimos
un elemento a la lista de cadenas (una cadena vacia con formato '=") y depende de la posicién en que nos
encontremos, afiadimos o no una fila a nuestra tabla. Fijaos que de estar en la posicién de la primera cadena
del array, la tabla ya presenta de partida esa fila, por lo que no es necesario afiadir una fila més. Finalmente,
y después de vaciar de contenido las casillas de edicién, entregamos el foco al cuadro de edicién del
concepto, permaneciendo en el estado de insercion hasta que no se valida mediante la pulsacion <enter> o
la de cancelacion <esc>.

procedure TfrnDat os. Hazl nserci on

begin
estado: = eslnsertar;
| ab_Est ado. capti on: = ' | NSERCI ON ;

/lactualizanps el estado de |os controles de navegaci 6n
spb_Prinmero. enabl ed: = fal se
spb_Anterior. enabl ed: = fal se
spb_Posterior. enabl ed: = fal se;
spb_Ul tino. enabl ed: = fal se
/'l actual i zanmps el estado de | os control es de mani pul aci 6n de dat os
bi b_Nuevo. enabl ed: = fal se
bi b_Val i dar. enabl ed: = true;
bi b_Borrar. enabl ed: = fal se
end;

No dejamos mas opcion que validar, y al hacerlo, regresaremos al estado de Navegacion, eje central
sobre el que nos movemos.

procedure TfrnDatos. bi b_Validard ick(Sender: TObject);
begin
/1 conprobanbs rapi danente que nos encontranps frente a un nunero deci nma
try
strToFl oat (edi _val or.text);
except
on E: Exception do
begin
Showvessage(' I ntroduce un val or decimal correcto: '+ edi _valor.text);
edi _val or. setfocus;
Exit;
end;
end;

/1 si es correcto el valor decimal y cunple que el concepto es no
/1 nulo o bien que no contiene caracter en blanco

if (edi _texto.text <> "'') and (edi _texto.text <> "' ') then
begin // actualizanos el valor en nuestro StringList en forma de igual dad
listatenp. Strings[item ndex-1]:= edi _texto.text + '=" + edi_valor.text;

/1Y paral el amente en nuestro StringGid

Lo més basico de Delphi 9

Objetos auxiliares V

stg_tabla.cells[0, item ndex]:= edi_texto.text;

stg_tabla.cells[1, item ndex]:= edi_valor.text;

/1 Nos situanps sobre el StringGid

stg_tabla.row = itemn ndex;

HazNavegaci on; / I Naveganos

Actual i zar Estado(item ndex); // Actualizanpbs estado de | os botones de navegaci 6n

end

el se

end;

begin

Showvessage(' I ntroduce un texto en el cuadro de edici 6n de CONCEPTO);
/1Un error se ha producido y volvenpos a las casillas de edicidn

edi _texto.setfocus;

end;

El procedimiento de validacion, principalmente se limitar4d a comprobar que los valores introducidos
son correctos: no se admiten cadenas vacias, (ni siquiera deberiamos permitir la existencia de cadenas
repetidas dentro de la lista de Strings. Prescindimos de este requisito para no oscurecer la comprension del
cddigo innecesariamente. Es un buen momento para repasar los comentarios que haciamos sobre Sort, que
nos podrian ofrecer nuevas capacidades a nuestro editor). En el apartado del campo Valor, deberemos

asegurarnos de que solo se almacenan nimeros decimales.

Pero, entonces ¢cuando entramos en estado de edicién?:

procedur e TfrnDat os. edi _Text oEnt er (Sender:
begin
if (estado = esNavegar) then

TObj ect) ;

begin
estado: = esEditar;
Haz Edi ci on;
end;
end: e CANCELAR =
Al pulsar <enter> sobre los cuadros de edicion Concepto y INACTIVO ———=]> ARADIR
Valor, entraremos en estado de Edicion. Hemos necesitado N AN
condicionarlo a encontrarnos, al momento de la pulsacion, en CANCELAR
estado de navegacion (esNavegar), puesto que en estado de
Insercion, también es invocado el procedimiento al escribir sobre A\¥2
el nuevo registro. De esa forma, mantenemos la independencia BORRAR <{—————» NAVEGAR
entre ambos estados. A
Y nos queda el procedimiento de Borrado de registro. CANCELAR
También surge la necesidad de definir un estado de borrado. v
Si observamos la transicion de estados que hemos establecido en EDITAR

la figura 4, el proceso de cancelacion afecta al estado de
Insercién y al de Edicion pero no al de Borrado. Al establecer el
estado, permitimos condicionar la pulsacion de <ESC> a no
encontrarnos en estado de Borrado, puesto que ya tenemos un
mensaje condicional que nos permite abortar el proceso después
de la pulsacion del boton cuyo caption es Borrar.

procedure TfrnDatos. bi b_Borrard i ck(Sender:

var

saltar:

begin

saltar: = fal se;

estado: = esBorrar;

| ab_est ado. capti on: = ' BORRAR ;

i f MessageDl g(' ¢Qui eres borrar
Situarse(0,item ndex) +

TObj ect) ;

bool ean;

/1l nostranos el
la linea '+

Lo més basico de Delphi

Figura 4: Diagrama de estados

rétul o antes de | a ventana nodal

'+ Situarse(1,iteni ndex)+

Objetos auxiliares V

'?', mtWarni ng, [thCk, nbCancel],0)= mr Ok t hen
begin //si decidinpbs borrar la |linea
| ab_est ado. capti on: = ' BORRAR ; /I mant enenps el rotulo
listatenp. Del ete(item ndex-1); //elim nambs el elenento de la lista pero
//falta elimnarlo de la tabla
/' Nos situanps correctanente en el elenento anterior al borrado

if (itemindex > 1) and (listatenp.Count >= 1) and (listatenp.count < itemi ndex) then

begin

if (item ndex = (stg_tabla. RowCount-1)) then saltar:= true; //estanps en la Gltinm
//fila (debenmpbs omitir copiar tabla())

Dec(item ndex);

end;
/] Salvo que estenps en el prinmer elenento que en vez de decrecer, |o dejanps asi
if (itemndex = 1) and (listatenp.Count = 0) then item ndex: = 0;

HazNavegacion; //Hala... a navegar

/1 Vanos a operar con el resto de el enentos que faltan (sobretodo |a tabla)

if itemndex > 0 then //si despues de borrar todavia queda al gun el enento
begin
estado: = esNavegar; //fijanps estado
edi _texto.text:= Situarse(0, itenmindex); // actualizams las casilla
edi _valor.text:= Situarse(l, item ndex); // de ediciodn
if saltar then stg_tabl a. RowCount: = stg_t abl a. RowCount - 1 /Ino hace falta

/Iborrar tabla solo elimnar ultim fila

el se Copi aTabl a(item ndex); //operanps sobre la tabla
Act ual i zar Est ado(i t emi ndex) ;
end

else //en caso contrario
begi n //pasanps a un estado de inactividad
Estadolnicial; //ya incluye estado en inactivo
/linicializanps canpos
stg_tabla.row = 1;
stg_tabla.rowcount: =
stg_tabla.Cells[O,1]:
stg_tabla.Cells[1,1]:
end;

end;

end;

2;

Y quizas, lo que pueda llamarnos mas la atencion es la existencia dentro del proceso de borrado del

método CopiaTabla(). Intentaré razonarlo:

Nuestra tabla es un componente de la clase TStringGrid. Este componente, oculta una gran parte de los
métodos disponibles en la clase TStrings, obligandonos a redefinirlos si queremos acceder a su uso. No
podemos en principio, hacer uso del método Assign() que nos permitiria recibir el contenido de la lista tras
la eliminacion de un elemento. La opcién que se me ocurre mas sencilla es recorrer la tabla
secuencialmente, desde el registro en que se produce el borrado hasta el Gltimo de los registros, recuperando
en la fila anterior el valor de la posterior y acabando dicho recorrido con la eliminacion de la Gltima de las
filas en la tabla. Dada las caracteristicas de nuestra aplicacién (pequefia cantidad de pagos -poco nimero de
registros-) planificar un algoritmo de esas caracteristicas apenas es problematico. No estamos hablando de

una base de datos, tal y como las podemos concebir y eso nos puede dar licencia, pienso, para admitirlo.

procedur e TfrnDat os. Copi aTabl a(i ndex: integer);
var
xI ndi ce: Integer;
begin
/lrecorrenps toda la tabla (QJO, HE DI CHO TODA)------- !
for xlIndice:= index to stg_tabla. RowCount - 2 do {1}
begi n {1}
stg_tabla.Cells[0, xI ndi ce stg_tabla. Cel | s[0O, xI ndi ce+1] ;

]:=
stg_tabla.Cells[1,xIndice]:= stg_tabla.Cells[1,xIndice+l];

Lo més basico de Delphi

11

Objetos auxiliares V

end;
/] Toda pero a partir de determ nada posici 6n.
//Cada fila copia el valor de la fila posterior
/1y al final elimnanos |a que sobra
st g_tabl a. RowCount : = stg_t abl a. RowCount - 1;
end;

Cancelar, editar o insertar...

Cuando declaramos el tipo TEstado en la interfaz del mddulo del editor omitiamos un estado de
Cancelacion. Hemos prescindido de él porque, digamoslo de una manera sencilla, es un estado transitorio
que no requiere la intervencion del usuario mas que para su activacion. A diferencia del estado de insercion,
por poner un ejemplo, Cancelar se ejecuta sin interrupciones que le puedan apartar de su objetivo
final:regresar al estado anterior. No es el caso de Insertar. Entramos en este estado tras la ejecucion del
procedimiento btn_NuevoClick(), ya sea mediante el botén o de la pulsacion de <+> y durante su corto
espacio de vida, comparte procedimientos comunes a otros estados, como el de edicion: se introducen
valores en las casillas de edicion. Ese es el momento en que se hace necesario la definicién de un estado
puesto que nos va a permitir diferenciar el objetivo dentro de procedimientos comunes a la transicion entre
los estado definidos.

Nos valemos de los eventos para invocar un estado determinado. Esta corresponde a la implementacion
del evento OnKeyDown en ambos cuadros de edicion:

procedure TfrnDatos. edi _Text oKeyDown(Sender: TObject; var Key: Wrd;
Shift: TShiftState);
begin
/1 al pulsar sobre ESC entranps en estado de Cancel aci 6n
if (key = VK _ESCAPE) and (estado <> esBorrar) then HazCancel aci on;
/lal pulsar '+ simulanos |a pul saci 6n de NUEVO
if (key = VK _ADD) and (estado = esNavegar) then bib_Nuevod ick(sender);
/lal pulsar '-' sinulanps |a pul saci 6n de BORRAR
if (key = VK _SUBTRACT) and (estado = esNavegar) then bib_Borrardick(sender);
end;

Tomando como referencia HazCancelacion y siguiendo el flujo del programa una vez que ha sido
invocada la rutina, observamos como el estado nos permite condicionar nuestras acciones. En el caso de
tener que deshacer un estado de edicion serd tan facil como volver a situarnos en el registro actual,
retomando de nuevo todos los valores antes de iniciar el estado de edicion.

procedur e TfrnDat os. HazCancel aci on;
begin
{SOLO PARA EL CASO DE QUE NOS ENCONTREMOS EDI TANDO UN REG STRC
if (estado = esEditar) then
begin //reponenps | os val ores originales
edi _texto.text:= Situarse(0, item ndex);
edi _valor.text:= Situarse(l, itemn ndex);
HazNavegaci on; //Vol venps al estado ori gi nal
Actual i zar Est ado(i t em ndex) ;
end;

Reponer el estado anterior a una insercion es algo mas complicado. Tenemos que tener en cuenta que ya
se ha afiadido una cadena a nuestro lista TStringList. Esa serd nuestra primera prioridad: borrar la cadena
afiadida y obtener el valor de itemindex previo a la insercion. Es de gran importancia este paso, ya que, al
cancelar la accién de insertar un elemento, podriamos regresar a un estado inicial donde itemindex toma
como valor 0 (no hay elementos en el editor), originando una excepcion al invocar la lectura del registro
actual a través del método Situarse() (que toma como lectura posiciones en la matriz en itemindex-1). Vistas

Lo més basico de Delphi 12

Objetos auxiliares V

las dos posibilidades: existian elementos en el editor antes de la insercion, o no existian elementos,
condicionamos la ejecucidn de unas acciones u otras al valor de itemindex

{SOLO PARA EL CASO DE QUE NOS ENCONTREMOS | NSERTANDO UN REG STRCG
if (estado = eslnsertar) then

begin //reponenbs | os val ores originales

listatenp. Del ete(item ndex-1);

/1 si se produce la cancel aci 6n se procede a decrecer el indice

if (itemndex > 1) and (listatenp. Count >= 1) and (listatenp.count < itemn ndex)
then Dec(iteni ndex);

/1 ojo.. en este caso estanps al principio y no podenps decrecer pero

/1 si debernos fijar a O

if (itemndex = 1) and (listatenp. Count = 0) then item ndex:= 0;

if item ndex = 0 then //si no hay filas
begin //reponenps el estado inicial o inactivo
edi _texto.Text:="";
edi _valor.text:="";
Est adol ni ci al ;
stg_tabla.rowcount:= 2; // nodificanps |a tabla
stg_tabla.row = 1;
end

el se
begin //reponenbs el estado de navegaci 6n
edi _texto.text:= Situarse(0, item ndex);
edi _val or. Text:= Situarse(1, item ndex);
stg_tabla.cells[0, item ndex]:= edi _texto.text; //nodificanps la tabla
stg_tabla.cells[1, item ndex]:= edi_val or.text;
stg_tabla.rowcount: = stg_tabla. RowCount - 1;
HazNavegaci on;
end;

Act ual i zar Est ado(i t emi ndex)

end;

end;

En cualquier caso, obtenido el valor de nuestra variable indice itemindex, podemos operar sobre la tabla
inferior, garantizando una sincronia entre tabla y lista de Strings.

Frente a este procedimiento anterior, HazEdicion y HazCancelacion, mantienen una estructura
paralela, que nos facilita enormemente el mantenimiento y la depuracion del codigo implementado.

procedur e TfrnDat os. HazEdi ci on; procedur e TfrnDat os. HazNavegaci on;
begin begin
est ado: = esEdit ar; est ado: = esNavegar;
| ab_Est ado. caption:= ' EDI Cl ON ; | ab_Est ado. capti on: = ' NAVEGACI ON ;
/lactual i zanos el estado de | os control es de navegaci 6n
spb_Prinmero. enabl ed: = fal se; spb_Pri nmero. enabl ed: = true;
spb_Anterior. enabl ed: = fal se; spb_Anterior. enabl ed: = true;
spb_Posterior. enabl ed: = fal se; spb_Posterior. enabl ed: = true;
spb_Ul tino. enabl ed: = fal se; spb_Ul ti no. enabl ed: = true;
/lactualizanpbs el estado de |os controles de mani pul aci 6n de datos
bi b_Nuevo. enabl ed: = f al se; bi b_Nuevo. enabl ed: = true;
bi b_Val i dar. enabl ed: = true; bi b_Val i dar. enabl ed: = fal se;
bi b_Borrar. enabl ed: = fal se; bi b_Borrar. enabl ed: = true;

st g_tabl a. Enabl ed: = fal se;

stg_tabl a. Enabl ed: = true;
end; ;

end;

Ambos procedimientos, como puedes observar, se limitan a mantener coherente nuestro interfaz
gréafico con el estado de nuestro editor de registros. Afectan a aquellos controles que tienen siempre el
mismo comportamiento frente a un estado definido, pero ese no es el caso que comentaremos a
continuacion.

Lo més basico de Delphi 13

Objetos auxiliares V

procedure TfrnDatos. Actual i zar Est ado(i ndex: | nteger);

begin
if index < 1 then
begin //no hay filas
spb_pri mero. enabl ed: = fal se;
spb_anteri or. enabl ed: = fal se;
spb_posterior. enabl ed: = fal se;
spb_ul tino. enabl ed: = fal se;
bi b_val i dar. enabl ed: = fal se;
bi b_nuevo. enabl ed: = true;
bi b_borrar. enabl ed: = fal se;
| ab_Cont ador. Caption:= "'0/0";
edi _text o. Enabl ed: = fal se;
edi _val or. Enabl ed: = fal se;
end;
if (index = 1) and (listatenp.Count = 1) then
begi n
spb_pri mero. enabl ed: = fal se;
spb_anterior. enabl ed: = fal se;
spb_posterior. enabl ed: = fal se;
spb_ul ti no. enabl ed: = fal se;
| ab_Cont ador . Caption: = IntToStr(1)+ /'+IntToStr(1);
edi _texto. Enabl ed: = true;
edi _val or. Enabl ed: = true;
end;
if (index = 1) and (listatenp.Count > 1) then
begi n
spb_pri mero. enabl ed: = fal se;
spb_anterior. enabl ed: = fal se;
spb_posterior. enabl ed: = true;
spb_ul ti no. enabl ed: = true;
| ab_Cont ador. Caption: = Int ToStr(item ndex)+' /' +IntToStr(listatenp. Count);
edi _texto. Enabl ed: = true;
edi _val or. Enabl ed: = true;
end;
if (index > 1) and (index < |istatenp. Count) then
begi n
spb_pri mero. enabl ed: = true;
spb_ant eri or. enabl ed: = true;
spb_posterior. enabl ed: = true;
spb_ul ti no. enabl ed: = true;
| ab_Cont ador. Caption: = Int ToStr(item ndex)+' /' +IntToStr(listatenp. Count);
edi _texto. Enabl ed: = true;
edi _val or. Enabl ed: = true;
end;
if (not (index = 0)) and (not (index = 1)) and (index = |istatenp. Count) then
begi n
spb_pri mero. enabl ed: = true;
spb_ant eri or. enabl ed: = true;
spb_posterior. enabl ed: = fal se;
spb_ul tino. enabl ed: = fal se;
| ab_Cont ador. Caption: = Int ToStr(item ndex)+'/'+IntToStr(listatenp.Count);
edi _texto. Enabl ed: = true;
edi _val or. Enabl ed: = true;
end;
end;
Li stado 2: | nplenentaci 6n del procedi mento ActualizarEstado().

Lo més basico de Delphi 14

Objetos auxiliares V

Cuando dependemos de la posicién del registro...

Nos queda un pequefio escollo por salvar y que afecta a todos aquellos objetos que van a modificar el
valor de alguna de sus propiedades, segun la posiciéon del registro. Todos estan relacionados, de alguna
forma, con la necesidad informar al usuario de la posicion del registro actual, representado por la variable
itemindex. Esto resulta definitivo, vital en nuestro intento de aumentar el grado de satisfaccion del usuario.
Debe saber en todo momento en donde esta, y que est& haciendo.

Echa un mirada al listado 2 -ActualizarEstado()- y comentamos.

Si observas muchos de los métodos, practicamente todos siguen un mismo esquema l6gico: se inicia un
estado, hay modificaciones en funcion del estado, y se acaba llamando al método de ActualizarEstado, que
rectifica en algln caso la activacion de un control determinado, segun sea el valor de itemindex. Este es el
parametro que recibe el procedimiento.

Vamos a analizar las distintas alternativas que se me han ocurrido pueden suceder:

® (index < 1)
e No hay registros en el editor. Todos los controles deben estar desactivados. Las etiquetas
mostraran el estado de inicializacion.

® ((index = 1) and (listatenp.Count = 1))
Estamos en el primero de los registros pero tampoco podemos navegar, puesto que solo hay un
registro. Vuelven a estar todos los controles de navegacion desactivados pero esta vez dejamos
activos los cuadros de edicion para que pueda ser modificado el registro.

® ((index = 1) and (listatenp.Count > 1))
Estamos situados en el primer registro de una lista con multiples registros. Via libre para todo
menos para ir hacia atras: anterior y primero son desactivados.

® ((index > 1) and (index < |istatenp. Count))
Situacion ideal para la navegacion. Via libre. Todo esta activado.

® ((not (index = 0)) and (not (index = 1)) and (index = listatenp. Count)))

Estamos situados en el ultimo de los registros. Date cuenta, de que, de no poner las dos
primeras condiciones cumpliria también el caso primero o el caso segundo. Necesitamos debilitar
la condicion para que este suceso tan solo se produzca cuando nos encontramos en el Gltimo de
los registros. En ese caso, habilitaremos los controles de navegacion anterior y primero, y
deshabilitaremos los de ultimo y posterior.

Hay muchas formas de poner lo mismo que yo he puesto. Hay programadores que prefieren ligar el
estado de un botdn al estado de uno o mas botones, de forma que se excluyan segin su activacion o no
activacion. Al final, me parece que lo realmente importante es que estén recogidos todos los estados posibles
y que exista una estructura lo suficientemente clara que permita una rapida depuracién y localizacion de
errores. Sin una minima estructura logica, a poco que pueda crecer nuestra aplicacion, adolecera de ser poco
facil de mantener, convirtiéndose con el tiempo en una soga alrededor de nuestro fragil cuello, apretandonos
un poco mas cada dia.

Primera conclusion y despedida.

El resto de procedimientos incluidos en el cddigo fuente, tienen menor importancia y en general,
participan de crear un flujo dinamico en la aplicacion. Se intenta sobre todo que el usuario se sienta comodo

Lo més basico de Delphi 15

Objetos auxiliares V

con ellay que sea realmente Util para é.Como resumen resataria, cOmo nos hemos valido de la propiedad
Namesy Values, que nos han evitado tener que implementar métodos para “filtrar” las cadenas de lalista.

Nos queda por ver, y serd en el préximo nimero, (donde continuaremos nuestro pequefio ejemplo), €l
uso de la propiedad Objects y la asociacion de estructuras a cada una de las cadenas que componen nuestro
componente TStringList. Junto a articulo se acompafa el codigo fuente del editor. Espero que hayais
encontrado ameno este rato que hemos compartido.

Y Manolo ... ¢Qué habré sido de él? Andaré discutiendo todavia con su jefe.Con un poco de suerte, en
el proximo nimero, tendra un motivo menos de que preocuparse.

Nos vemos pronto. Un saludo atodos.

Lo més basico de Delphi 16

http://www.grupoalbor.com,

