Salvador Jover — mailto:s.jover@wanadoo.es

Objetos Auxiliares VI

Entramos de lleno en la segunda parte del
conversor: un pequeio ejemplo que nos permite
conocer el uso de propiedades como Names, Values
y Objects, en la clase TStrings.

Iniciabamos en el capitulo anterior una primera entrega del ejemplo que hoy vamos a acabar de
implementar. Es posible que, después de leido dicho capitulo, todavia te queden algunas dudas sobre la
finalidad del mismo, puesto que el editor apenas nos da pistas sobre el objetivo final. Las primeras lineas de
“Objetos Auxiliares V” las dedicabamos a contar una pequefa historia que intentaba justificarlo, para que
pudiera tener un poco de sentido. Era la historia de nuestro administrativo, al que bautizamos con el nombre
de Manolo, y al que colocamos en la tesitura de obtener, rapidamente, los desgloses de los importes en una
serie de registros. Tenia que calcular el cambio en moneda, necesario para efectuar los pagos, pudiendo
elegir las monedas sobre las que queria obtenerlo.

Para afadir, borrar o editar dichos registros nos valiamos de un pequefio editor, cuyo desarrollo
entregdbamos en el mdédulo “Datos.pas”. Teniamos parte del camino hecho, y en su recorrido, conseguiamos
dar utilidad a las propiedades Names y Values, que era uno de los motivos de hacerlo.

Dejabamos claro, que el objetivo no era hacer una aplicacién en toda la extension de la palabra, y sin
embargo, a medida que se va a desarrollar nuestro objeto conversor, a medida que incrementa su
funcionalidad, nos va a facilitar el que al menos lo parezca :-). De hecho, se partia inicialmente de la
premisa de que no existia registro alguno al iniciarse la ventana del editor. Ahora nos vemos obligados a
considerar la posibilidad de que esto no sea asi. El motivo es facil de entender: vamos a aprovechar las
facilidades que nos brinda la clase TStrings para guardar o cargar la informacion en un fichero. Esto nos va
a permitir guardar los datos antes de acabar nuestro programa, o bien recuperarlos en cualquier momento.

Finalmente, y como ya comentabamos, TConversorCambio también nos va a permitir jugar con la
propiedad Objects y asociar un registro (en este caso es una estructura de tipo registro -record-, pero la
metodologia seguira siendo similar si consideramos objetos salvando los temas de reserva de memoria).
Cada una de estas estructuras, nos seran necesarias para poder hacer los calculos de los desgloses. Seréa el
método AgregarLista(), pero eso ya lo veremos un poco mas adelante.

Type

EError Mascaras = C ass(Exception);
El nval i dl ndex = C ass(Exception);
El nval i dSel ecci on = C ass(Exception);

Tval or = Record
Concepto: String[255];
Ent rada: Doubl e;

end;

PEuro = ~TEuro;

mailto:dejover@eresmas.com

Objetos auxiliares VI

ThWoneda = I nteger;

TMascaras = (UN_CENT, DOS_CENT, ClI NCO CENT, DI EZ_CENT, VEI NTE_CENT,
Cl NCUENTA_CENT, UN_EURCS, DOS_EURCS, Cl NCO EURCS, DI EZ_EURCS,
VEI NTE_EURGS, ClI NCUENTA EURGCS, Cl EN_EURGS, DOSCl ENTOS_EURGCS,

QUI NI ENTOS_EURCS) ;

TEuro = Record

VEur os: Doubl €;

VRest o: Double; //Lo que reste del canbio

VDesgl ose: ARRAY [Low TMascaras).. H gh(TMascaras)] of TMneda;
end;

TSel ecci on = Set of TMascar as;

TOnAf t er ChangeMascar aEvent = procedure (Sender: TCbject) of Object;
TOnAf t er ChangeConver sor Event = procedure (Sender: TObject) of Object;

TConver sor Canbi 0 = cl ass(TConponent)

private
f Euro: TEuro;
f Sel ecci on: TSel ecci on;
fLista: TStrings;
FOnAf t er ChangeMascar aEvent : TOnAft er ChangeMascar aEvent ;
FOnAf t er ChangeConver sor Event : TOnAf t er ChangeConver sor Event ;
FCount: | nteger;
function Get Nanme(l ndex: Integer): String;
function GetValue(lndex: Integer): String;
procedure Set OnAfter ChangeMascar aEvent (const Val ue: TOnAft er ChangeMascar aEvent) ;
procedur e Set OnAft er ChangeConver sor Event (const Val ue:
TOnAf t er ChangeConver sor Event) ;
function GetDesgl oseCanbi o(l ndex: Integer; fMascara: TMascaras): |nteger;
function GetDesgl oseTotal (f Mascara: TMascaras): |nteger;

prot ect ed
procedure Cal cul ar; virtual;
property Lista: TStrings read fLista,;

public
constructor Create(AOmer: TConponent); Override;
destructor Destroy; Override;

procedur e Agregar_Mascara(Val ue: TMascar as) ;

procedure Elim nar_Mascara(Val ue: TMascar as) ;

procedure Inicializar_Mascaras;

function Buscar_Mascara(Val ue: TMascar as): Bool ean;

function Nom nal _Mascar a(Val ue: TMascaras): String; virtual;
function Contar_Mascaras: |nteger;

function Total _Mascaras: |nteger;

procedure BorrarlLista;
function AgregarlLista(const Values: Array of TValor): Bool ean;

procedure SaveToFil e(const FileName: String);
procedure LoadFronFil e(const FileNane: String);

function GetTotal: String;
function GetResto: String;

function ShowEditor(Position: Integer): Integer; virtual;

property Val ues[Index:Integer]: String read GetVal ue;
property Names[lndex: Integer]: String read Get Nane;

Objetos auxiliares VI

property Desgl oseCanbi o[| ndex: Integer; fMascara: TMascaras]: |nteger read
Get Desgl oseCanbi o;
property Desgl oseTotal [fMascara: TMascaras]: |Integer read GetDesgl oseTotal;

property Count: Integer read FCount; //numero de el ementos

property OnAfter ChangeMascaraEvent: TOnAfter ChangeMascar aEvent read
FOnAf t er ChangeMascar aEvent write Set OnAfter ChangeMascar aEvent ;
property OnAfter ChangeConversor Event: TOnAft er ChangeConver sor Event read
FOnAf t er ChangeConver sor Event write Set OnAfter ChangeConver sor Event;
end;

Listado 1. Interfaz de TConversorCambio

Metidos en harina...

Lo primero que vamos a hacer es comentar algunos aspectos relevantes del listado 1, donde se nos
presenta el interfaz que declara la clase TConversorCambio, y que nos pueden ayudar a encontrar sentido al
disefio del objeto conversor.

Previo a esto, nos va a ser de gran ayuda, analizar como van a interactuar los elementos principales de
nuestra aplicacion, sin entrar en detalles muy concretos que nos desvien de la idea general: Por un lado
disponemos de una instancia de TForm que va a representar el interfaz grafico del usuario. Esta ventana, que
a partir de este momento denominaremos Ventana Principal, sera la responsable de comunicarse con el
objeto conversor, y lo hara invocando correctamente los métodos publicos del mismo. Esta comunicacion se
establece en los dos sentidos Interfaz-Componente y Componente-Interfaz. Esta claro que nuestro interfaz
gréafico puede invocar un método para entregar nuevos valores a nuestro conversor, - lo hemos llamado con
muy poco sentido de originalidad AgregarLista() - , pero toda vez que hemos actualizado el objeto
conversor, se hara necesaria la entrega del resultado de los célculos y lo que es mas importante, la
notificacion de que nuestro interfaz debe actualizarse.

En este punto, podemos encontrar sentido a la declaracion de los dos eventos en la clase
TConversorCambio, responsables de que nuestro interfaz sea coherente con el contenido del objeto
conversor. El primero notificara los cambios en la activacion/desactivacion de una moneda. El segundo hara
lo propio cada vez que sea necesario actualizar el interfaz, y seré este ultimo, el responsable de invocar los
métodos oportunos para leer los nuevos valores resultado de la modificacion.

¢Y nuestro editor...? Aqui aparece un punto importante en la toma de decisiones del disefio del
componente. Tenemos que decidir quien ha de invocar el editor; si lo ha de hacer la ventana principal o lo
ha de hacer el propio objeto conversor. Cualquiera de los dos va a poder hacerlo. Sin lugar a duda, elegimos
gue lo haga nuestro conversor y para ello, hacemos publico el método ShowEditor(), que permitira a nuestro
interfaz crear la ventana de edicion de registros. Los motivos son bastante evidentes, aungque en un principio
puedan pasar desapercibidos: claridad y sencillez en el cddigo, menor nimero de referencias entre los
distintos moédulos. Se gana en claridad. El coste de trasladar la informacidn del interfaz al mddulo editor es
infinitamente mas gravoso que el de hacerlo entre dos objetos descendientes de la clase TStrings, cuando
entregamos el contenido en la lista de cadenas del objeto conversor a la lista de cadenas en el Editor. Pero lo
vamos a ver con mayor detalle en la siguiente seccion.

De la declaracion de tipos del listadol, podemos destacar como nos hemos valido de una enumeracion
(TMascaras), y del conjunto (TSeleccion), como “flags” que nos permitan conocer si una seleccion de
moneda esta activa o no. Como siempre, existen distintas formas de hacer lo mismo y tendria similar

3

Objetos auxiliares VI

funcién el uso de un array de booleanos. Este tema lo vamos a ver con detenimiento en el apartado de
Seleccion de Maéscaras, donde comentaremos los métodos que hace publico el conversor, no solo para
seleccionar/deseleccionar una moneda, sino también aquellos que se hacen necesarios para saber el total de
monedas elegidas, obtener informacion particular sobre si una de ellas esta elegida o no o sobre el mismo
rotulo que deba mostrar la unidad monetaria.

Hablabamos en los parrafos anteriores de que se producia una comunicacion en el sentido Interfaz-
Conversor y que ésta tenia lugar a través del método AgregarLista(). La eleccion de hacerlo asi y no de un
modo natural, dando capacidad de escritura a las propiedades Names y Values en la clase
TConversorCambio, es una decision de disefio. La implementacion del método AgregarLista() hacia mas
evidente el objetivo final del ejercicio, y que no era otro que ser un ejemplo del uso de la propiedad Objects
en la clase TStrings. Parecido razonamiento podemos hacer a que el ascendiente elegido, en este caso
TObject, no haya podido ser TComponent, y haber accedido a las capacidades que nos brinda el Inspector
de Objetos y trabajar en tiempo de disefio. Para nuestros objetivos no se hacia necesarias tales
consideraciones, por lo que queda para el lector, si es que encuentra interés en hacerlo asi, modificar la
ascendencia del conversor y el registro del componente en la paleta de componentes del IDE de Delphi.
Propiedades que se hacen publicas, tales como los eventos, se considerarian a partir de entonces como
publicadas. O la adicién mismo de una propiedad en la parte publicada del objeto, que represente al fichero,
y que en su escritura o lectura, se efectie mediante la invocacién de los métodos SaveToFile() o
LoadFromFile(), del objeto conversor.

Otro comentario interesante que podemos hacer, y esta apreciacion se la debo a Julio Garcia, es la
siguiente:

Vamos a comparar estas dos estructuras

TEuro = record

Veur os: Doubl e;

VRest o: Doubl €;

Vdesgl ose: ARRAY[Low TMascar as) .. H gh(TMascaras) of TMoneda;
end;

TEuro = record
Veur os: Doubl g;
VRest 0: Doubl g;
TiCenti np, T2Centinmobs, T5Centi nos, T10Centi nps,
T20Cent i nos, T50Centi nos, T1Euro, T2Euros,
T5Eur os, T10Euros, T20Euros, T50Euros, T100Eur os,
T200Eur os, T500Euros: TMdneda;

end;

Ambas estructuras nos dicen lo mismo. Quizas la segunda resulte en este caso algo escandalosa dado
que contiene muchos campos, mientras que la primera es sencilla y clara. Ademads, y esto es lo més
importante, el array hace sencilla la implementacion de un bucle que recorra el indice. El ahorro de cddigo
es notable.

Por cierto, no he dicho que en el campo VEuros sera almacenado un decimal que representa el valor del
registro a desglosar. VResto representa lo que no se puede repartir con el tipo de cambio elegido. Y el array
lo desglosado. Esto que ahora comentamos afecta a las estructuras asociadas a la lista que mantiene el objeto
conversor. Si hablamos de la estructura de totales el array representara el acumulado total de desgloses y los
dos primeros camplo los totales correspondientes a ese concepto.

No obstante, dado que se entrega con el articulo, las fuentes sobre las que estamos trabajando, no estara
de mas que se ejecute la aplicacion y se vea el resultado de la manipulacién del interfaz grafico. Probadlo y
volvamos para analizar con mas detalle cada uno de los métodos de nuestro conversor.

Objetos auxiliares VI

Creacion y Destruccion del Conversor

El constructor de nuestro componente es bien sencillo y en él nos limitamos a inicializar aquellas
variables que intervienen. Inicializamos el contador de lineas fCount, inicializamos la seleccion de monedas
fSeleccion, y tras crear la lista de cadenas fLista, hacemos lo propio con la estructura de totales fEuro, cuyos
valores son puestos a cero.

constructor TConversorCambio.Create(AOwner: TComponent);

var
f Mascara: TMascar as;
begi n
i nherited Create(AOmer);
fcount: = 0;
fSeleccion:=[]; // todavia no hay sel ecci 6n de mascara [conjunto = vaci 0]
/lLa clase TStrings nos pernmtird mantener la lista de conceptos y una
/lestructura TEuro asociada a cada una de | as cadenas.
fLista:= TStringList.Create;

with fEuro do // inicializanos |a estructura de totales
begi n
VEuUr os: . 0;
VRest o: . 0;
f Mascar a: = MENOR_MASCARA,;
whil e f Mascara <= MAYOR MASCARA do
begi n
VDesgl ose[f Mascara] : = O;
f Mascar a: = Succ(fMascara);
end;
end;

| OO

end;

En el destructor nos limitamos a destruir la lista de cadenas fLista, y tras ésta, la invocacion al
destructor heredado para que destruya la parte de objeto que no hemos creado nosotros.
destructor TConver sor Canbi o. Dest r oy;
begi n
BorrarLista; //liberanps todas | as estructuras
fLista.Free;//destruimos la lista

i nherited Destroy;
end;

Seleccion de Mascaras (Agregar, Eliminar, Buscar, Contar, etc...)

El método Agregar_Mascara, recibe como parametro una referencia por valor cuyo tipo es TMascaras,
y que representa la unidad monetaria que vamos a seleccionar.

procedure TConver sor Canbi 0. Agr egar _Mascar a(Val ue: TMascar as) ;

begi n
if not (Value in fSeleccion) then
begin
f Sel ecci on: = f Sel ecci on + [Val ue];
i f Assigned(OnAfterChangeMascaraEvent) then OnAfter ChangeMascar aEvent (Sel f);
end;
end;

Es un método tan sencillo como breve. Si no estd la unidad monetaria que recibe como parametro
dentro de las elegidas, las que permanecen activas, procederemos a activarla mediante el uso habitual de los
operadores aplicables a las variables de tipo conjunto (Set), que son el operador '+' y el operador '-'. Aqui

Objetos auxiliares VI

podemos matizar la posibilidad de hacerlo también mediante el uso de Include(), Exclude(), con la misma
funcionalidad. Hecho esto, y afiadido el nuevo valor al conjunto fSeleccion, que es la variable global que
almacena las mascaras elegidas, (las unidades monetarias selecionadas), serd invocado el Evento que nos
indica que el conjunto de seleccion de monedas ha cambiado, dando a nuestro interfaz la oportunidad de
hacer cuantas acciones crea convenientes en la implementacion del evento.

Eliminar la seleccion de una unidad monetaria es similar al observado en la linea anterior.
procedure TConversor Canbi o. El i m nar _Mascar a(Val ue: TMascar as) ;
begi n
if (Value in fSeleccion) then
begi n
f Sel ecci on: = f Sel ecci on - [Val ue];
i f Assigned(OnAfterChangeMascar aEvent) then OnAfter ChangeMascar aEvent (Sel f);
end;
end;

En este caso, con toda logica, solo tendra lugar la eliminacion si dicha seleccion esta activa en el
conjunto fSeleccion, dando paso si es asi a su eliminacion y a la invocacion del evento, en las mismas
condiciones que las sefialadas mas arriba.

Saber si una méscara, una moneda ha sido elegida es tan sencillo que nos basta una sola linea para
obtener un valor booleano de verdadero o falso. El operador in nos devolvera verdadero si Value, la mascara
gue pasamos como parametro, pertenece al conjunto fSeleccion.

function TConver sor Canbi 0. Buscar _Mascar a(Val ue: TMascar as): Bool ean;

begi n

Result:= (Value in fSeleccion);//¢esta activa di cha mascara
end;

Y aunque el método Contar_Mascaras, afiada algo mas de codigo, no sera menos evidente. Declaramos
una variable del tipo TMascaras y nos posicionamos en el menor de los posibles valores que puede adoptar.
Y recorremos todos los valores de la enumeracion mediante un bucle While...do, siendo la evaluacion al
valor True del método BuscarMascara() el que nos permita al final del mismo, obtener el total de méscaras
activas.

function TConversor Canbi 0. Cont ar _Mascaras: | nteger;

var
xMascara: TMascaras;

begi n
xMascar a: = MENOR_MASCARA; //nos situanps en |la prinera de | as nmascaras
Result:= 0;

whil e xMascara <= MAYOR _MASCARA do //y las recorrenos todas
begin //si esta activa
i f Buscar_Mascara(xMascara) then Result:= Result + 1; //la contanps
xMascar a: = Succ(xMascara); //siguiente mascara
end;
end;

Por otro lado, y ya para acabar con esta seccion, se nos hace necesaria una funcion que nos permita
nombrar cada una de las unidades elegidas. Hacerlo de esta forma y no ligarnos a Constantes, nos permitira
en un futuro, sobreescribir este pequefio método en un descendiente, para asi modificar la rotulacion que se
puede hacer necesaria en la cabecera de listados o tablas.

function TConver sor Canbi 0. Nonmi nal _Mascar a(Val ue: TMascaras): String;

begi n

Result:="'";

case Val ue of
UN_CENT: Result:="1 Cns."';

Objetos auxiliares VI

QUI NI ENTOS_EURGCS: Result:= '500 Euros.';
end;

Y ya para finalizar el apartado, una pequefia reflexion que me parece muy oportuna y en la que intentaré
razonar un pequefio error, con la intencién de que pueda ser advertido. Parece razonable apoyarse en el
conocimiento que se tiene del flujo de la aplicacion, para construir a la medida que se nos haga necesaria los
métodos del componente sobre el que estamos trabajando. Sin embargo, esta postura tan préctica en
ocasiones nos puede hacer implementar algunos métodos que aun siendo libres de generar errores en ese
contexto, implican estados incoherentes en el mismo objeto. Vamos a poner un ejemplo:
Inicializar_Mascaras.

procedure TConversor Canbi o. | nici al i zar _Mascar as;

begin

fSel eccion:=[];
end;

Conscientes de que no podemos acceder desde el exterior, desde la Ventana Principal, a la variable
fSeleccion que nos indica el conjunto de monedas activas, puesto que fSeleccion es una variable privada del
objeto, podemos tener la tentacion de implementar un método tal cual el anterior, que nos permita eliminar
de golpe el total de selecciones hechas, facilitando los estados de inicializacién. Podéis observar como es
invocada indirectamente esta rutina a través del método Nuevol1Click() con la rutina Estadolnicial.

¢Cual es entonces el error? El error esta en lo que no hace el método y que es, inicializar las estruturas
gue almacenan los totales fEuro y hacer lo propio con los objetos asociados a cada una de las cadenas de
fLista. Asi pues, al ser un método publico del Conversor, podria ser Illamado en cualquier parte del
programa, provocando que se deseleccionaran el total de monedas activas sin que afectara al estado del
interfaz, que seguiria reflejando los valores de las estructuras utilizadas para el calculo. Es peligroso hacer
publico un método que sea “correcto” cuando su invocacién se haga en determinadas condiciones y no en
otras, quedando condicionados a tener la suficiente memoria para recordar en que situaciones debemos
emplearlos y en cuales no.

Borrar una lista del Conversor.

Entramos de lleno en el uso de la propiedad Objects en la clase TStrings. Cuando deseemos borrar una
lista de registros del Conversor, y esto debera hacerse antes de agregar los nuevos valores, deberemos
recorrer cada una de las cadenas de la variable Lista, del tipo TStringList, y liberar la memoria reservada a
la estructura,

TEuro = record
VEur os: Doubl €;
VRest o: Doubl €;

VDesgl ose: ARRAY [Low TMascaras)..H gh(TMascaras)] of TMneda;
end;

Observemos el procedimiento:

procedure TConver sor Canbi o. Borrar Li st a;

var
xI ndi ce: Integer;
Nodo: PEuro;
begi n
for xIndice:= 0 to Lista.Count-1 do
begi n

Nodo: = PEur o(Li sta. Qoj ect s[xI ndice]);
Di spose(Nodo) ;

Li sta. Cbj ects[xlndice]:= N I;

end;

Objetos auxiliares VI

Li sta. d ear;
f Count: = 0O;
end;

Recorremos todos los elementos de la lista. Y para cada uno de ellos, es liberada la memoria que
reservamos en el momento de la asociacién de la estructura al elemento de la lista, desligandonos finalmente
del objeto mediante la asignacion a Nil.

Hecho esto, nos basta invocar el método Clear y poner a cero el contador de elementos del objeto
CONVersor.

Agregar una lista y calcular los resultados...

Comentédbamos anteriormente que nuestro disefio, estaba condicionado por la decision de implementar
un metodo que permitiera agregar una lista de valores en nuestro objeto TConversorCambio, en lugar de
permitir la modificacion individual de cada uno de los elementos de la lista y objetos asociados. Habiamos
declarado como de solo lectura la propiedad Lista.

Vamos a analizar paso a paso el método AgregarLista(), que recibird como parametro un array abierto
del tipo TValor, permitiéndonos recibir una cantidad indeterminada de valores que en el momento de su
implementacion no nos es conocido.

Como valor de retorno devolvemos un booleano que nos indica si la operacion se ha llevado con éxito o
no.

Pero recordemos primero que encierra el tipo TValor:

TVal or = Record
Concepto: String[255];
Ent rada: Doubl e;

end;

TValor es un estructura de tipo Registro cuyos campos son un String y un Decimal. Es decir, que va a
recibir en el campo Concepto la cadena de caracteres que nos indicaba el motivo asociado a cada valor. Y en
el campo Entrada, el valor decimal a analizar. Pongamos un ejemplo:

Concepto----------- > “Fra. 22 de Electricidad Manresa, S.L.”

Asi pues, en dicho array abierto, se nos va a entregar desde el interfaz del usuario, desde la ventana
principal de la aplicacion, la lista de elementos que ha de contener el Conversor, y serd en este
procedimiento, y concretamente en el método Calcular, en donde haremos todos los desgloses
correspondientes a cada uno de los valores.

begin

Resul t: = Fal se;
BorrarLista; //inicializanos la lista

try

for xlndice:=Low(Val ues) to High(Val ues) do
egin

= TVal or (Val ues|[xI ndi ce]) . Concept o;
TVal or (Val ues[xI ndi ce]) . Entr ada;

b
s
f

New(Dat aEur o) ;
wi t h Dat aEur o*do

begin

VEuros: = f;

VRest o: = 0. 0;

f Mascar a: = MENOR_MASCARA,;

Objetos auxiliares VI

whil e fMascara <= MAYOR MASCARA do
begi n
VDesgl ose[f Mascara] : = O;
f Mascar a: = Succ(fMascara);
end;
end;

Li st a. Addhj ect (s, Tobj ect (Dat aeuro));

I nc(f Count);

end;
Cal cul ar; //ya podenos efectuar |as operaci ones necesari as
Resul t: = True; //devol venps | a estructura de total es
Except
on E: Exception do

i f Assigned(OnAfter ChangeConver sor Event) then OnAfter ChangeConversor Event (Sel f);
end;
end;

Tras poner el resultado de la funcién a false, iniciamos la misma con la invocacion del método
BorrarLista, que como se ha comentado en el apartado anterior nos va a permitir inicializar la lista de
cadenas en la que almacena el conversor cada uno de los registros, liberando la memoria de las estructuras
que ha utilizado. Hecho esto, estamos preparados para recibir los valores de los campos Concepto y Entrada
del array abierto, con el recorrido de un bucle For..do que recorra todo el array. En dicho bucle, y para cada
uno de registros afiadidos a la lista de cadenas, reservamos memoria para una nueva estructura de desgloses,
inicializada a 0, y que sera asociada mediante la propiedad Objects. De esa forma, un item de la lista, no
solo tiene el concepto recibido sino una estructura donde ha almacenado el valor y donde, hechos los
calculos necesarios, almacenara los desgloses correspondientes a la seleccion de monedas activas.

Y l6gicamente, para cada entrada afiadida al conversor, es incrementado el contador de registros.

Hecho esto, invocamos el método Calcular, encapsulando en él toda la operatoria necesaria para
efectuar los desgloses. Con éxito o sin el, nos tenemos que asegurar que el interfaz gréafico sea notificado de
los nuevos valores en curso.

Podemos analizar igualmente que es lo que ocurre cuando internamente se produce la llamada al
procedimiento Calcular:

El primer paso lo empleamos para asegurarnos que la lista contiene elementos, pues en caso contrario,
no tiene sentido realizar ningun calculo, por lo que, tras invocar el evento, salimos del procedimiento.

/I nos aseguranos que la lista contiene al gin val or
if Lista.Count <= 0 then
begin //tenenbs que dejar que el usuario actualice el interfaz
i f Assigned(OnAfter ChangeConver sor Event) then OnAfter ChangeConversor Event (Sel f);
exit;
end;

A continuacion, previo a ningun calculo, vamos a proceder a inicializar la estructura de totales.
Seguimos la misma mecénica que vimos en el método AgregarLista para cada una de los registros asociados
a los elementos de las lista de cadenas.

/linicializanps |a estructura de totales
with fEuro do

begin

VEuros: = 0. 0;

VResto: = 0. 0;

f Mascar a: = MENOR_MASCARA;

whil e f Mascara <= MAYOR MASCARA do
begin
f Eur 0. VDesgl ose[f Mascara] : = 0;

Objetos auxiliares VI

f Mascara: = Succ(fMascara);
end;
end;

A partir de aqui, el algoritmo para el calculo de los desgloses. Basicamente el algoritmo hace lo
siguiente:

Para cada elemento de la lista, recorre todas las mascaras activas empezando por la mayor hasta la
menor de ellas. Si esta activa la méscara, deduce del valor total la parte unitaria a esa moneda, acumulando
los totales en la estructura fEuro. El resultado al finalizar el bucle que recorre toda los elementos de la lista
es que las estructuras asociadas que almacenan el desglose de cada valor pueden ser consultadas mediante
métodos y propiedades que hace publicas el conversor, tales como la propiedad DesgloseCambio[] o el
método GetResto.

Aqui empieza el bucle que recorrera todos los registros del conversor:

/ /I para cada una de | as cadenas de la lista (y sus objetos asoci ados)
for xIndice:= 0 to Lista.Count-1 do
begi n
// obt enenpbs el val or sobre el que harenos el desgl ose
Val or _e: = Trunc(PEuro(Lista. Qbjects[xlndice])”. VEuros);
Val or _c:= StrTol nt (Fl oat ToSt r (Round((PEur o(Li sta. Obj ects[xIndi ce])”". VEuros -
Val or _e)*100)));
f Eur 0. VEur os: = f Euro. VEur os + PEuro(Lista. Qoj ects[xlndice])”. VEuros;
/1y acumul anps el total de euros

Toda vez que estamos situados sobre un registro determinado y ya tenemos el acumulado en el campo
fEuro.VEuros, y las variables Valor_e y Valor_c sobre las que se operara temporalmente con el nuevo
importe, se inicia el bucle que analizaré para esos valores como se ha de repartir el cambio.

zl ndi ce: = | nteger (TMascar as(MAYOR_MASCARA)) ;
Wi le zlndice >= 0 DO

begin

f Mascar a: = TMascar as(zl ndi ce) ;

|/ enpezanps a filtrar |as condiciones

i f Buscar_Mascara(fMascara) then

begin
if fMascara >= UN_EURGCS t hen
begi n
Whi l e Val or_e >= VUni dad[f Mascara] do
begin
I nc(PEur o(Li st a. Obj ect s[xI ndi ce])”. VDesgl ose[f Mascara]);
Val or _e: = Val or_e - VUni dad[f Mascar a] ;
end;
end
el se
begi n
if Valor_e > 0 then
begin
Valor _c:= Valor _c + Valor_e * 100;
Val or _e: = 0;
end;
Whil e Val or_c >= VUni dad[f Mascara] do
begin
I nc(PEur o(Li sta. Obj ect s[xI ndice])”. VDesgl ose[f Mascara]);
Val or _c:= Valor_c - VUnidad[f Mscara];
end;
end;

/I 'acumul anps el total
f Eur 0. VDesgl ose[f Mascar a] : = f Euro. VDesgl ose[f Mascara] +
PEur o(Li st a. Qoj ect s[xI ndi ce]) ”. VDesgl ose[f Mascara] ;
end;
Dec(zl ndi ce);

10

Objetos auxiliares VI
end; // endbegi n while

if Valor_e > 0 then
f Euro. VResto: = fEuro. VResto + StrToFl oat (I ntToStr(Valor_e));
if Valor_c > 0 then fEuro.VResto: = fEuro. VResto + (Valor_c / 100);
/I henbs acunul ado el valor de o que no ha sido desgl osado en | a estructura
//de total es
end;

Concluido con éxito el algoritmo, procedemos a invocar el evento que permite actualizar el interfaz
gréfico.

i f Assigned(OnAfter ChangeConversor Event) then OnAfter ChangeConver sor Event (Sel f);
end;

Abrir y Guardar un fichero en nuestro Conversor.

Si queremos que los resultados que almacena nuestro Conversor no desaparezcan al cerrar nuestra
aplicacion, nos veremos obligados a crear los métodos adecuados para salvar el contenido a un fichero. Nos
basta para ello, dotar a nuestro objeto de un métodos LoadFromFile y SaveToFile, nombrados asi por seguir
la linea que se inici6 desde la VCL.

Eso si, queremos aprovechar todo lo que nos pueda ofrecer la clase TStrings, y en este caso concreto,
practicamente nos va a solucionar aquellos detalles propios del almacenamiento o la apertura del fichero.

Veamos como podemos guardar el contenido del conversor en un fichero:

procedure TConver sor Canbi 0. SaveToFi | e(const Fil eName: String);
var

StringTenp: String;

Li staTenp: TStrings;

S: Array [0.. MAX_MASCARAS- 1] of Char;

xI ndi ce: Integer;

begi n

Creamos una lista temporal. EI motivo de crearla es porque dicho fichero almacenara en su primera
linea la situacion [activa/no activa] de las mascaras mediante ceros (0) y unos (1). Hecho esto, resta asignar
a dicha lista temporal el contenido de la lista de nuestro conversor. Y ya en ese punto, generar la igualdad
afiadiendo a la cadena de texto el caracter '=' seguido del valor decimal asociado a la cadena. No nos hace
falta nada mas para reconstruir posteriormente la situacion actual.

Li staTenp: = TStringList.Create; //nos val enps de una |ista tenporal
try
/Ivanmpos a exigirle al conversor que al nenos exista una sel eccion de 2 mascaras
if Contar_Mascaras < 2 then
Rai se El nval i dSel ecci on. Creat e(' Sel ecci on Mascaras debe ser nmayor de dos');
//tomarenos todo el contenido del mienbro |lista del conversor
//incluidos | os objetos. Estos nos serviran para recuperar |os
//val ores asociados a cada lista
Li st aTenp. Assi gn(Lista);
for xlndice:= 0 to MAX MASCARAS-1 do //recorrenos todas |as mascaras
i f Buscar_Mascara(TMascaras(xlndice)) then S[xIndice]:= "1
el se §[xIndice]l:="0";
StringTenp: = ' MASCARA=" +String(s); //ya tenenps |la prinera |inea
Li staTenp.Insert (0, StringTenp); //la instanps en primer |ugar
/1Y recorrenps el resto de lista para construir el resto de igual dades
for xIndice:= 1 to ListaTenp.Count - 1 do

11

Objetos auxiliares VI

i f ListaTenp. Strings[xlndice] <> t hen
Li staTenp. Strings[xl ndi ce]: = ListaTenp. Strings[xlndice] + '=" +
For mat Fl oat (' #0. 00", PEuro(Li staTenp. Obj ect s[xI ndi ce]) ”. VEur os) ;
Li st aTenp. SaveToFi | e(Fi | enane);//guardanps el fichero

finally
Li staTenp. Free;//y liberanps la lista tenporal
end;
end;

Reconstruir el estado del objeto conversor a partir de la carga del archivo, teniendo en cuenta que
somos capaces, (la clase TStrings incorpora dicha capacidad), de leer cadenas donde existe la igualdad '=',
es algo que resultara trivial. Podemos leer la primera linea y recuperar el estado de seleccién de cada una
de las monedas. Y podemos, tal y como hicimos en el método AgregarLista(), generar los objetos
asociados a cada una de las cadenas en la lista temporal, y afiadirlos finalmente mediante el método
AddObject() que implementa la clase TStrings. Tal que asi:

Li st a. AddObj ect (Li st aTenp. Nanes[xI ndi ce], Tobj ect (Dat aeuro));

procedure TConver sor Canbi o. LoadFronFi |l e(const FileName: String);
var

Li staTenp: TStri ngs;

S: String [MAX_MASCARAS] ;

xI ndi ce: Integer;

Dat aEur o: PEur o;

f Mascara: TMascar as;
begi n

Li staTenp: = TStringlList.Create; //necesitanps una |lista tenpora
/I para | eer |as igual dades

try

Nos valemos de un lista temporal en la que cargamos el contenido del archivo que vamos a abrir. ;Hay
algo mas sencillo?

Li st aTenp. LoadFron¥i | e(Fi | enanme) ;//carganps el fichero en la lista tenmpora
/1l eemos el contenido del valor de la primera linea

/1que no es otro que |la seleccion de mascaras al nacenada en el fichero

/'l Ej enpl o: MASCARA=10010001110101

/1 Un valor 1 nos indica que esta activada y 0 que esta desactivada

Vamos a recuperar la mascara de ceros y unos que nos indica cuales monedas estan activas. Asi que nos
vamos a la primera de las lineas de la lista. jjjAqui también nos podemos valer de las propiedades Names y
Values para hacerlo!!!

S: =Li st aTenp. Val ues[Li st aTenp. Nanes[0]] ;
fSeleccion:=[]; //inicializanps |a sel eccion de mascaras
//recorrenos el string conprobando si esta activada o no

Un bucle para incorporar al conjunto fSeleccion las mascaras correspondientes...

for xlndice:= 0 to MAX_ MASCARAS - 1 do
if S[xIndice+l] ="'1" then
f Sel eccion: = fSel eccion + [TMascaras(xlndice)] //activanps |a nmascara
else //si no estd activada | a desactivanps
if S[xIndice+l] = '0" then fSeleccion:= fSeleccion - [TMascaras(xl ndice)]
el se Rai se EErrorMascaras. Create(' Error: formato no valido de archivo');
BorrarlLista;//ya podenps borrar el contenido de la |lista de conversor
//disponenos a inicializar la lista tenporal con |os val ores recogi dos
//del fichero, creando | a estructura de objetos

Y otro bucle para inicializar las nuevas estructuras y recoger los valores decimales sobre los que
operaremos.

12

Objetos auxiliares VI

for xIndice:= 1 to ListaTenp. Count - 1 do
begin
New(Dat aEuro); //reservanbps nenoria
wi t h Dat aEur o”~do
begin {y es guardado finalmente en el registro}
VEur os: = StrToFl oat (Li staTenp. Val ues[Li st aTenp. Nanes|[xI ndi ce]]);
VRest o: = 0. 0;
f Mascar a: = MENOR_MASCARA,;
whil e fMascara <= MAYOR _MASCARA do
begi n
VDesgl ose[f Mascara] : = O;
f Mascar a: = Succ(fMascara);
end;
end;

Vale. Ahora ya entregamos el resultado a la lista del objeto conversor
Li st a. Addnj ect (Li staTenp. Nanes[xI ndi ce], Tobj ect (Dat aeuro));

E incrementamos el contador.

Inc(fCount); {incrementanos el contador de |ineas}
end;
finally

En cualquier caso, debemos asegurarnos de que se finalmente se libera la lista temporal. De la misma
forma procedemos a invocar el método para que se recalculen los desgloses. Ahora ya no hay necesidad el
método AgregarLista() porque el objeto conversor, en este punto, ya esta actualizado. Es una de las ventajas
que nos da encapsular la operatoria en un procedimiento.

Li st aTenp. Fr ee;
Calcular; //nos permitira crear |la estructura de objetos y de totales
end;
end;

Editando los datos

Para acabar, interesa comentar un pequefio detalle referente al Editor, expuesto en el capitulo anterior.
Hemos sobreescrito el constructor de la ventana frmDatos, donde se implementa el editor al que hacemos
referencia, para que pueda construirse de acuerdo a dos condiciones. Por un lado es necesario condicionar
(count > 0), tal y como observaréis en el cédigo fuente, para discriminar la inicializacion de variables en el
evento de creacion del formulario a dos situaciones distintas, que nuestro editor no contenga inicialmente
ningun registro o que por el contrario si que los deba contener, en cuyo caso, también necesitara en cual de
ellos de posicionarse. Este Gltimo dato se lo entregamos mediante el pardmetro Posicion.

constructor TfrnDat os. Creat e(AOwer: TConponent; carga: bool ean; Posicion: |nteger);
begi n

i nherited Create(AOmer);

f HazCar ga: = carga;

| tem ndex: = Posi ci on;

f Conversor: = (AOwmer as TConver sor Canbi 0) ;

end;

No son necesarios demasiados comentarios a las siguientes lineas en las que se crea de forma dinamica
la ventana modal que representa el editor y que, antes de su destruccion, nos permite saber la posicion del
registro actual sobre el que nos posicionaremos al recobrar el foco en la ventana principal de la aplicacion.

function TConver sor Canbi 0. ShowEdi t or (Position: Integer): |nteger;
var

13

Objetos auxiliares VI

Dat : Tf r nDat os;

begi n
Dat: = TfrnDatos. Create(Sel f, (count > 0), Position);
try
i f Dat.Showivbdal = nrOk then Borrarlista;
Resul t: = Dat. st g_Tabl a. Row,
finally
Dat . Fr ee;
end;
end;

La despedida...

Han quedado algunas cosas en el tintero pero creo que es e punto ideal para dejar ya este pequefio
gjemplo que hemos compartido. Y pienso gque los objetivos que marcamos al iniciarlo se han cubierto con
Creces. :-)

Ya.. se que lo podemos mejorar. Ahora mismo, mientras escribo estas palabras de despedida me
gustaria iniciarlo de nuevo y eliminar todo aquello que no me gusta, 10 que me parece que puede ser
enfocado de otra forma més sencilla. De hecho, tengo que agradecer a Julio Garciay a Mario Rodriguez €l
que me dieran algunos consejos para hacer mas coherente el disefio. Seguro que mi torpeza no ha hecho
honor a sus comentarios.

Asi que nos despedimos hasta el siguiente nimero de Sintesis en el que veremos e Ultimo de los
capitulos de laserie. Por fin...ea. ;-)

14

