
Objetos Auxiliares VI

Entramos de lleno en la segunda parte del
conversor: un pequeño ejemplo que nos permite

conocer el uso de propiedades como Names, Values
y Objects, en la clase TStrings.

Iniciábamos en el capítulo anterior una primera entrega del ejemplo que hoy vamos a acabar de
implementar. Es posible que, después de leído dicho capítulo, todavía te queden algunas dudas sobre la
finalidad del mismo, puesto que el editor apenas nos da pistas sobre el objetivo final. Las primeras lineas de
“Objetos Auxiliares V” las dedicábamos a contar una pequeña historia que intentaba justificarlo, para que
pudiera tener un poco de sentido. Era la historia de nuestro administrativo, al que bautizamos con el nombre
de Manolo, y al que colocamos en la tesitura de obtener, rápidamente, los desgloses de los importes en una
serie de registros. Tenía que calcular el cambio en moneda, necesario para efectuar los pagos, pudiendo
elegir las monedas sobre las que quería obtenerlo. 

Para añadir, borrar o editar dichos registros nos valíamos de un pequeño editor, cuyo desarrollo
entregábamos en el módulo “Datos.pas”. Teníamos parte del camino hecho, y en su recorrido, conseguíamos
dar utilidad a las propiedades Names y Values, que era uno de los motivos de hacerlo. 

Dejábamos claro, que el objetivo no era hacer una aplicación en toda la extensión de la palabra, y sin
embargo, a medida que se va a desarrollar nuestro objeto conversor, a medida que incrementa su
funcionalidad, nos va a facilitar el que al menos lo parezca :-). De hecho, se partía inicialmente de la
premisa de que no existía registro alguno al iniciarse la ventana del editor. Ahora nos vemos obligados a
considerar la posibilidad de que esto no sea así. El motivo es fácil de entender: vamos a aprovechar las
facilidades que nos brinda la clase TStrings para guardar o cargar la información en un fichero. Esto nos va
a permitir guardar los datos antes de acabar nuestro programa, o bien recuperarlos en cualquier momento.  

Finalmente, y como ya comentábamos, TConversorCambio también nos va a permitir jugar con la
propiedad Objects y asociar un registro (en este caso es una estructura de tipo registro -record-, pero la
metodología seguirá siendo similar si consideramos objetos salvando los temas de reserva de memoria).
Cada una de estas estructuras, nos serán necesarias para poder hacer los cálculos de los desgloses. Será el
método AgregarLista( ), pero eso ya lo veremos un poco más adelante.

 Type 

   EErrorMascaras = Class(Exception);
   EInvalidIndex = Class(Exception);
   EInvalidSeleccion = Class(Exception);
  
   TValor = Record
      Concepto: String[255];
      Entrada: Double;
   end;

   PEuro = ^TEuro;   

1

Salvador Jover – mailto:s.jover@wanadoo.es                        

mailto:dejover@eresmas.com


   TMoneda = Integer;

   TMascaras = (UN_CENT, DOS_CENT, CINCO_CENT, DIEZ_CENT, VEINTE_CENT, 
                CINCUENTA_CENT, UN_EUROS, DOS_EUROS, CINCO_EUROS, DIEZ_EUROS,
                VEINTE_EUROS, CINCUENTA_EUROS, CIEN_EUROS,DOSCIENTOS_EUROS,
                QUINIENTOS_EUROS);

   TEuro = Record
     VEuros: Double;
     VResto: Double;  //Lo que reste del cambio
     VDesglose: ARRAY [Low(TMascaras)..High(TMascaras)] of TMoneda;
   end;

   TSeleccion = Set of TMascaras;

   TOnAfterChangeMascaraEvent = procedure (Sender: TObject) of Object;
   TOnAfterChangeConversorEvent = procedure (Sender: TObject) of Object;

   TConversorCambio = class(TComponent)
  
 private

fEuro: TEuro; 
    fSeleccion: TSeleccion; 
    fLista: TStrings; 
    FOnAfterChangeMascaraEvent: TOnAfterChangeMascaraEvent;
    FOnAfterChangeConversorEvent: TOnAfterChangeConversorEvent; 
    FCount: Integer;
    function GetName(Index: Integer): String;
    function GetValue(Index: Integer): String;
    procedure SetOnAfterChangeMascaraEvent(const Value: TOnAfterChangeMascaraEvent);
    procedure SetOnAfterChangeConversorEvent(const Value:
           TOnAfterChangeConversorEvent);
    function GetDesgloseCambio(Index: Integer; fMascara: TMascaras): Integer;
    function GetDesgloseTotal(fMascara: TMascaras): Integer;
  
 protected
    procedure Calcular; virtual;
    property Lista: TStrings read fLista;
  
 public
    constructor Create(AOwner: TComponent); Override;
    destructor Destroy; Override;

    procedure Agregar_Mascara(Value:TMascaras); 
    procedure Eliminar_Mascara(Value:TMascaras); 
    procedure Inicializar_Mascaras;
    function Buscar_Mascara(Value:TMascaras): Boolean;  
    function Nominal_Mascara(Value:TMascaras): String; virtual;  
    function Contar_Mascaras: Integer; 
    function Total_Mascaras: Integer; 

    procedure BorrarLista;
    function AgregarLista(const Values: Array of TValor): Boolean;

    procedure SaveToFile(const FileName: String);
    procedure LoadFromFile(const FileName: String);

    function GetTotal: String; 
    function GetResto: String; 

    function ShowEditor(Position: Integer): Integer; virtual; 

    property Values[Index:Integer]: String read GetValue;
    property Names[Index: Integer]: String read GetName;

Síntesis Nº 8 – Abril 2002  2

Objetos auxiliares VI                                                                       



    property DesgloseCambio[Index: Integer; fMascara: TMascaras]: Integer read
             GetDesgloseCambio;
    property DesgloseTotal[fMascara: TMascaras]: Integer read GetDesgloseTotal;

    property Count: Integer read FCount; //número de elementos

    property OnAfterChangeMascaraEvent: TOnAfterChangeMascaraEvent read
             FOnAfterChangeMascaraEvent write SetOnAfterChangeMascaraEvent;
    property OnAfterChangeConversorEvent: TOnAfterChangeConversorEvent read
             FOnAfterChangeConversorEvent write SetOnAfterChangeConversorEvent;
  end;

Listado 1. Interfaz de TConversorCambio

Metidos en harina...

Lo primero que vamos a hacer es comentar algunos aspectos relevantes del listado 1, donde se nos
presenta el interfaz que declara la clase TConversorCambio, y que nos pueden ayudar a encontrar sentido al
diseño del objeto conversor.

Previo a esto, nos va a ser de gran ayuda, analizar como van a interactuar los elementos principales de
nuestra aplicación, sin entrar en detalles muy concretos que nos desvíen de la idea general: Por un lado
disponemos de una instancia de TForm que va a representar el interfaz gráfico del usuario. Esta ventana, que
a partir de este momento denominaremos Ventana Principal, será la responsable de comunicarse con el
objeto conversor, y lo hará invocando correctamente los métodos públicos del mismo. Esta comunicación se
establece en los dos sentidos Interfaz-Componente y Componente-Interfaz. Esta claro que nuestro interfaz
gráfico puede invocar un método para entregar nuevos valores a nuestro conversor, - lo hemos llamado con
muy poco sentido de originalidad AgregarLista( ) - , pero toda vez que hemos actualizado el objeto
conversor, se hará necesaria la entrega del resultado de los cálculos y lo que es mas importante, la
notificación de que nuestro interfaz debe actualizarse.

En este punto, podemos encontrar sentido a la declaración de los dos eventos en la clase
TConversorCambio, responsables de que nuestro interfaz sea coherente con el contenido del objeto
conversor. El primero notificará los cambios en la activación/desactivación de una moneda. El segundo hará
lo propio cada vez que sea necesario actualizar el interfaz, y será este último, el responsable de invocar los
métodos oportunos para leer los nuevos valores resultado de la modificación.

¿Y nuestro editor...? Aquí aparece un punto importante en la toma de decisiones del diseño del
componente. Tenemos que decidir quien ha de invocar el editor; si lo ha de hacer la ventana principal o lo
ha de hacer el propio objeto conversor. Cualquiera de los dos va a poder hacerlo. Sin lugar a duda, elegimos
que lo haga nuestro conversor y para ello, hacemos público el método ShowEditor( ), que permitirá a nuestro
interfaz crear la ventana de edición de registros. Los motivos son bastante evidentes, aunque en un principio
puedan pasar desapercibidos: claridad y sencillez en el código, menor número de referencias entre los
distintos módulos. Se gana en claridad. El coste de trasladar la información del interfaz al módulo editor es
infinitamente más gravoso que el de hacerlo entre dos objetos descendientes de la clase TStrings, cuando
entregamos el contenido en la lista de cadenas del objeto conversor a la lista de cadenas en el Editor. Pero lo
vamos a ver con mayor detalle en la siguiente sección.

De la declaración de tipos del listado1, podemos destacar como nos hemos valido de una enumeración
(TMascaras), y del conjunto (TSeleccion), como “flags” que nos permitan conocer si una selección de
moneda está activa o no. Como siempre, existen distintas formas de hacer lo mismo y tendría similar

Síntesis Nº 8 – Abril 2002 3

Objetos auxiliares VI                                                                       



función el uso de un array de booleanos. Este tema lo vamos a ver con detenimiento en el apartado de
Selección de Máscaras, donde comentaremos los métodos que hace público el conversor, no solo para
seleccionar/deseleccionar una moneda, sino también aquellos que se hacen necesarios para saber el total de
monedas elegidas, obtener información particular sobre si una de ellas está elegida o no o sobre el mismo
rótulo que deba mostrar la unidad monetaria. 

Hablábamos en los párrafos anteriores de que se producía una comunicación en el sentido Interfaz-
Conversor y que ésta tenía lugar a través del método AgregarLista( ). La elección de hacerlo así y no de un
modo natural, dando capacidad de escritura a las propiedades Names y Values en la clase
TConversorCambio, es una decisión de diseño. La implementación del método AgregarLista( ) hacía más
evidente el objetivo final del ejercicio, y que no era otro que ser un ejemplo del uso de la propiedad Objects
en la clase TStrings. Parecido razonamiento podemos hacer a que el ascendiente elegido, en este caso
TObject, no haya podido ser TComponent, y haber accedido a las capacidades que nos brinda el Inspector
de Objetos y trabajar en tiempo de diseño. Para nuestros objetivos no se hacía necesarias tales
consideraciones, por lo que queda para el lector, si es que encuentra interés en hacerlo así, modificar la
ascendencia del conversor y el registro del componente en la paleta de componentes del IDE de Delphi.
Propiedades que se hacen públicas, tales como los eventos, se considerarían a partir de entonces como
publicadas. O la adición mismo de una propiedad en la parte publicada del objeto, que represente al fichero,
y que en su escritura o lectura, se efectúe mediante la invocación de los métodos SaveToFile( ) o
LoadFromFile( ), del objeto conversor.    

Otro comentario interesante que podemos hacer, y esta apreciación se la debo a Julio García, es la
siguiente: 

Vamos a comparar estas dos estructuras
     TEuro = record
       Veuros: Double;   
       VResto: Double;
       Vdesglose: ARRAY[Low(TMascaras)..High(TMascaras) of TMoneda;
     end;

 TEuro = record
       Veuros: Double;   
       VResto: Double;
       T1Centimo, T2Centimos, T5Centimos, T10Centimos,
       T20Centimos, T50Centimos, T1Euro, T2Euros,
       T5Euros, T10Euros, T20Euros, T50Euros, T100Euros, 
       T200Euros, T500Euros: TMoneda;
     end;

Ambas estructuras nos dicen lo mismo. Quizás la segunda resulte en este caso algo escandalosa dado
que contiene muchos campos, mientras que la primera es sencilla y clara. Además, y esto es lo más
importante, el array hace sencilla la implementación de un bucle que recorra el índice. El ahorro de código
es notable.

Por cierto, no he dicho que en el campo VEuros será almacenado un decimal que representa el valor del
registro a desglosar. VResto representa lo que no se puede repartir con el tipo de cambio elegido. Y el array
lo desglosado. Esto que ahora comentamos afecta a las estructuras asociadas a la lista que mantiene el objeto
conversor. Si hablamos de la estructura de totales el array representará el acumulado total de desgloses y los
dos primeros camplo los totales correspondientes a ese concepto. 

No obstante, dado que se entrega con el artículo, las fuentes sobre las que estamos trabajando, no estará
de más que se ejecute la aplicación y se vea el resultado de la manipulación del interfaz gráfico. Probadlo y
volvamos para analizar con más detalle cada uno de los métodos de nuestro conversor.

Síntesis Nº 8 – Abril 2002   4

Objetos auxiliares VI                                                                      



Creación y Destrucción del Conversor

El constructor de nuestro componente es bien sencillo y en él nos limitamos a inicializar aquellas
variables que intervienen. Inicializamos el contador de lineas fCount, inicializamos la selección de monedas
fSeleccion, y tras crear la lista de cadenas fLista, hacemos lo propio con la estructura de totales fEuro, cuyos
valores son puestos a cero.

constructor TConversorCambio.Create(AOwner: TComponent);
var
fMascara: TMascaras;
begin
   inherited Create(AOwner);
   fcount:= 0;
   fSeleccion:= []; // todavía no hay selección de máscara [conjunto = vacio]
   //La clase TStrings nos permitirá mantener la lista de conceptos y una
   //estructura TEuro asociada a cada una de las cadenas.
   fLista:= TStringList.Create;

   with fEuro do // inicializamos la estructura de totales
      begin
      VEuros:= 0.0;
      VResto:= 0.0;
      fMascara:= MENOR_MASCARA;
      while fMascara <= MAYOR_MASCARA do
        begin
        VDesglose[fMascara]:= 0;
        fMascara:= Succ(fMascara);
        end;
      end;
end;

En el destructor nos limitamos a destruir la lista de cadenas fLista, y tras ésta, la invocación al
destructor heredado para que destruya la parte de objeto que no hemos creado nosotros.

destructor TConversorCambio.Destroy;
begin
   BorrarLista; //liberamos todas las estructuras
 fLista.Free;//destruimmos la lista

   inherited Destroy;
end;

Selección de Máscaras (Agregar, Eliminar, Buscar, Contar, etc...)

El método Agregar_Mascara, recibe como parámetro una referencia por valor cuyo tipo es TMascaras,
y que representa la unidad monetaria que vamos a seleccionar.  

procedure TConversorCambio.Agregar_Mascara(Value:TMascaras); 
begin
   if not (Value in fSeleccion) then
       begin
       fSeleccion:= fSeleccion + [Value];
       if Assigned(OnAfterChangeMascaraEvent) then OnAfterChangeMascaraEvent(Self);
       end;
end;

Es un método tan sencillo como breve. Si no está la unidad monetaria que recibe como parámetro
dentro de las elegidas, las que permanecen activas, procederemos a activarla mediante el uso habitual de los
operadores aplicables a las variables de tipo conjunto (Set), que son el operador '+' y el operador '-'. Aquí

Síntesis Nº 8 – Abril 2002  5

Objetos auxiliares VI                                                                      



podemos matizar la posibilidad de hacerlo también mediante el uso de Include( ), Exclude( ), con la misma
funcionalidad. Hecho esto, y añadido el nuevo valor al conjunto fSeleccion, que es la variable global que
almacena las máscaras elegidas, (las unidades monetarias selecionadas), será invocado el Evento que nos
indica que el conjunto de selección de monedas ha cambiado, dando a nuestro interfaz la oportunidad de
hacer cuantas acciones crea convenientes en la implementación del evento.

Eliminar la selección de una unidad monetaria es similar al observado en la linea anterior. 
procedure TConversorCambio.Eliminar_Mascara(Value:TMascaras); 
begin
   if (Value in fSeleccion) then
      begin
      fSeleccion:= fSeleccion - [Value];
      if Assigned(OnAfterChangeMascaraEvent) then OnAfterChangeMascaraEvent(Self);
      end;
end;

En este caso, con toda lógica, solo tendrá lugar la eliminación si dicha selección está activa en el
conjunto fSeleccion, dando paso si es así a su eliminación y a la invocación del evento, en las mismas
condiciones que las señaladas más arriba.

Saber si una máscara, una moneda ha sido elegida es tan sencillo que nos basta una sola linea para
obtener un valor booleano de verdadero o falso. El operador in nos devolverá verdadero si Value, la máscara
que pasamos como parámetro,  pertenece al conjunto fSeleccion.

function TConversorCambio.Buscar_Mascara(Value:TMascaras): Boolean;
begin
   Result:= (Value in fSeleccion);//¿esta activa dicha máscara
end;

Y aunque el método Contar_Mascaras, añada algo más de código, no será menos evidente. Declaramos
una variable del tipo TMascaras y nos posicionamos en el menor de los posibles valores que puede adoptar.
Y recorremos todos los valores de la enumeración mediante un bucle While...do, siendo la evaluación al
valor True del método BuscarMascara( ) el que nos permita al final del mismo, obtener el total de máscaras
activas. 

function TConversorCambio.Contar_Mascaras: Integer;
   var
   xMascara: TMascaras;
begin
   xMascara:= MENOR_MASCARA; //nos situamos en la primera de las máscaras
   Result:= 0;
   while xMascara <= MAYOR_MASCARA do //y las recorremos todas
      begin //si está activa
      if Buscar_Mascara(xMascara) then Result:= Result + 1; //la contamos
      xMascara:= Succ(xMascara); //siguiente máscara
      end;
end;

Por otro lado, y ya para acabar con esta sección, se nos hace necesaria una función que nos permita
nombrar cada una de las unidades elegidas. Hacerlo de esta forma y no ligarnos a Constantes, nos permitirá
en un futuro, sobreescribir este pequeño método en un descendiente, para así modificar la rotulación que se
puede hacer necesaria en la cabecera de listados o tablas. 

function TConversorCambio.Nominal_Mascara(Value:TMascaras): String;
begin
   Result:= '';
   case Value of
      UN_CENT:             Result:='1 Ctms.';
       ...
       ...
       ... 

Síntesis Nº 8 – Abril 2002   6

Objetos auxiliares VI                                                                      



      QUINIENTOS_EUROS:    Result:= '500 Euros.';
   end;
end;

Y ya para finalizar el apartado, una pequeña reflexión que me parece muy oportuna y en la que intentaré
razonar un pequeño error, con la intención de que pueda ser advertido. Parece razonable apoyarse en el
conocimiento que se tiene del flujo de la aplicación, para construir a la medida que se nos haga necesaria los
métodos del componente sobre el que estamos trabajando. Sin embargo, esta postura tan práctica en
ocasiones nos puede hacer implementar algunos métodos que aun siendo libres de generar errores en ese
contexto, implican estados incoherentes en el mismo objeto. Vamos a poner un ejemplo:
Inicializar_Mascaras.

procedure TConversorCambio.Inicializar_Mascaras;
begin
     fSeleccion:= [];
end;

Conscientes de que no podemos acceder desde el exterior, desde la Ventana Principal, a la variable
fSeleccion que nos indica el conjunto de monedas activas, puesto que fSeleccion es una variable privada del
objeto, podemos tener la tentación de implementar un método tal cual el anterior, que nos permita eliminar
de golpe el total de selecciones hechas, facilitando los estados de inicialización. Podéis observar cómo es
invocada indirectamente esta rutina a través del método Nuevo1Click( ) con la rutina EstadoInicial.

¿Cual es entonces el error? El error está en lo que no hace el método y que es, inicializar las estruturas
que almacenan los totales fEuro y hacer lo propio con los objetos asociados a cada una de las cadenas de
fLista. Así pues, al ser un método público del Conversor, podría ser llamado en cualquier parte del
programa, provocando que se deseleccionaran el total de monedas activas sin que afectara al estado del
interfaz, que seguiría reflejando los valores de las estructuras utilizadas para el cálculo. Es peligroso hacer
público un método que sea “correcto” cuando su invocación se haga en determinadas condiciones y no en
otras, quedando condicionados a tener la suficiente memoria para recordar en que situaciones debemos
emplearlos y en cuales no.

Borrar una lista del Conversor.

Entramos de lleno en el uso de la propiedad Objects en la clase TStrings. Cuando deseemos borrar una
lista de registros del Conversor, y esto deberá hacerse antes de agregar los nuevos valores, deberemos
recorrer cada una de las cadenas de la variable Lista, del tipo TStringList, y liberar la memoria reservada a
la estructura, 

  TEuro = record
    VEuros: Double;
    VResto: Double;  
    VDesglose: ARRAY [Low(TMascaras)..High(TMascaras)] of TMoneda;
  end;

Observemos el procedimiento:
procedure TConversorCambio.BorrarLista;
   var
   xIndice: Integer;
   Nodo: PEuro;
begin
   for xIndice:= 0 to Lista.Count-1 do
      begin
      Nodo:= PEuro(Lista.Objects[xIndice]);
      Dispose(Nodo);
      Lista.Objects[xIndice]:= Nil;
      end;

Síntesis Nº 8 – Abril 2002  7

Objetos auxiliares VI                                                                      



   Lista.Clear;
   fCount:= 0;
end;

Recorremos todos los elementos de la lista. Y para cada uno de ellos, es liberada la memoria que
reservamos en el momento de la asociación de la estructura al elemento de la lista, desligándonos finalmente
del objeto mediante la asignación a Nil.

Hecho esto, nos basta invocar el método Clear y poner a cero el contador de elementos del objeto
conversor. 

Agregar una lista y calcular los resultados...

Comentábamos anteriormente que nuestro diseño, estaba condicionado por la decisión de implementar
un metodo que permitiera agregar una lista de valores en nuestro objeto TConversorCambio, en lugar de
permitir la modificación individual de cada uno de los elementos de la lista y objetos asociados. Habíamos
declarado como de solo lectura la propiedad Lista.

Vamos a analizar paso a paso el método AgregarLista( ), que recibirá como parámetro un array abierto
del tipo TValor, permitiéndonos recibir una cantidad indeterminada de valores que en el momento de su
implementación no nos es conocido.

Como valor de retorno devolvemos un booleano que nos indica si la operación se ha llevado con éxito o
no.

Pero recordemos primero que encierra el tipo TValor:
  TValor = Record
     Concepto: String[255];
     Entrada: Double;
  end;

TValor es un estructura de tipo Registro cuyos campos son un String y un Decimal. Es decir, que va a
recibir en el campo Concepto la cadena de caracteres que nos indicaba el motivo asociado a cada valor. Y en
el campo Entrada, el valor decimal a analizar. Pongamos un ejemplo:

Concepto-----------> “Fra. 22 de Electricidad Manresa, S.L.”
Entrada-------------> 425,38 

Así pues, en dicho array abierto, se nos va a entregar desde el interfaz del usuario, desde la ventana
principal de la aplicación, la lista de elementos que ha de contener el Conversor, y será en este
procedimiento, y concretamente en el método Calcular, en donde haremos todos los desgloses
correspondientes a cada uno de los valores.

begin
   Result:= False;
   BorrarLista; //inicializamos la lista

   try
  for xIndice:=Low(Values) to High(Values) do

      begin
      s:= TValor(Values[xIndice]).Concepto; 
      f:= TValor(Values[xIndice]).Entrada;  
                                                                                
      New(DataEuro);                                                            
      with DataEuro^do                                                         
         begin                   
         VEuros:= f;   
         VResto:= 0.0;
         fMascara:= MENOR_MASCARA;

Síntesis Nº 8 – Abril 2002   8

Objetos auxiliares VI                                                                      



         while fMascara <= MAYOR_MASCARA do
            begin
            VDesglose[fMascara]:= 0;
            fMascara:= Succ(fMascara);
            end;                                                           
         end;
                         
      Lista.AddObject(s, Tobject(Dataeuro));
      Inc(fCount);
      end;
   Calcular; //ya podemos efectuar las operaciones necesarias
   Result:= True; //devolvemos la estructura de totales
   Except
   on E:Exception do
     if Assigned(OnAfterChangeConversorEvent) then OnAfterChangeConversorEvent(Self);
   end;
end;

Tras poner el resultado de la función a false, iniciamos la misma con la invocación del método
BorrarLista, que como se ha comentado en el apartado anterior nos va a permitir inicializar la lista de
cadenas en la que almacena el conversor cada uno de los registros, liberando la memoria de las estructuras
que ha utilizado. Hecho esto, estamos preparados para recibir los valores de los campos Concepto y Entrada
del array abierto, con el recorrido de un bucle For..do que recorra todo el array. En dicho bucle, y para cada
uno de registros añadidos a la lista de cadenas, reservamos memoria para una nueva estructura de desgloses,
inicializada a 0, y que será asociada mediante la propiedad Objects. De esa forma, un ítem de la lista, no
solo tiene el concepto recibido sino una estructura donde ha almacenado el valor y donde, hechos los
calculos necesarios, almacenará los desgloses correspondientes a la selección de monedas activas.

Y lógicamente, para cada entrada añadida al conversor, es incrementado el contador de registros.

Hecho esto, invocamos el método Calcular, encapsulando en él toda la operatoria necesaria para
efectuar los desgloses. Con éxito o sin el, nos tenemos que asegurar que el interfaz gráfico sea notificado de
los nuevos valores en curso.

Podemos analizar igualmente que es lo que ocurre cuando internamente se produce la llamada al
procedimiento Calcular:

El primer paso lo empleamos para asegurarnos que la lista contiene elementos, pues en caso contrario,
no tiene sentido realizar ningun calculo, por lo que, tras invocar el evento, salimos del procedimiento.

   //nos aseguramos que la lista contiene algún valor
   if Lista.Count <= 0 then
     begin  //tenemos que dejar que el usuario actualice el interfaz
     if Assigned(OnAfterChangeConversorEvent) then OnAfterChangeConversorEvent(Self);
     exit;
     end;

A continuación, previo a ningun calculo, vamos a proceder a inicializar la estructura de totales.
Seguimos la misma mecánica que vimos en el método AgregarLista para cada una de los registros asociados
a los elementos de las lista de cadenas.

   //inicializamos la estructura de totales
   with fEuro do
      begin
      VEuros:= 0.0;
      VResto:= 0.0;
      fMascara:= MENOR_MASCARA;
      while fMascara <= MAYOR_MASCARA do
         begin
         fEuro.VDesglose[fMascara]:= 0;

Síntesis Nº 8 – Abril 2002  9

Objetos auxiliares VI                                                                      



         fMascara:= Succ(fMascara);
         end;
      end;

A partir de aquí, el algoritmo para el cálculo de los desgloses. Básicamente el algoritmo hace lo
siguiente:

Para cada elemento de la lista, recorre todas las máscaras activas empezando por la mayor hasta la
menor de ellas. Si está activa la máscara, deduce del valor total la parte unitaría a esa moneda, acumulando
los totales en la estructura fEuro. El resultado al finalizar el bucle que recorre toda los elementos de la lista
es que las estructuras asociadas que almacenan el desglose de cada valor pueden ser consultadas mediante
métodos y propiedades que hace públicas el conversor, tales como la propiedad DesgloseCambio[] o el
método GetResto.

Aquí empieza el bucle que recorrerá todos los registros del conversor:
   //para cada una de las cadenas de la lista (y sus objetos asociados)
   for xIndice:= 0 to Lista.Count-1 do
      begin
      //obtenemos el valor sobre el que haremos el desglose
      Valor_e:= Trunc(PEuro(Lista.Objects[xIndice])^.VEuros);

Valor_c:= StrToInt(FloatToStr(Round((PEuro(Lista.Objects[xIndice])^.VEuros -
Valor_e)*100)));

      fEuro.VEuros:= fEuro.VEuros + PEuro(Lista.Objects[xIndice])^.VEuros; 
     //y acumulamos el total de euros

Toda vez que estamos situados sobre un registro determinado y ya tenemos el acumulado en el campo
fEuro.VEuros, y las variables Valor_e y Valor_c sobre las que se operará temporalmente con el nuevo
importe, se inicia el bucle que analizará para esos valores como se ha de repartir el cambio. 

     zIndice:= Integer(TMascaras(MAYOR_MASCARA));
     While zIndice >= 0 DO
          begin
          fMascara:= TMascaras(zIndice);
          //empezamos a filtrar las condiciones
          if Buscar_Mascara(fMascara) then
               begin
               if fMascara >= UN_EUROS then
                    begin
                    While Valor_e >= VUnidad[fMascara] do
                         begin
                         Inc(PEuro(Lista.Objects[xIndice])^.VDesglose[fMascara]); 
                         Valor_e:= Valor_e - VUnidad[fMascara]; 
                         end;
                    end
               else
                    begin
                    if Valor_e > 0 then
                         begin
                         Valor_c:= Valor_c + Valor_e * 100;
                         Valor_e:= 0;
                         end;
                    While Valor_c >= VUnidad[fMascara] do
                         begin
                         Inc(PEuro(Lista.Objects[xIndice])^.VDesglose[fMascara]);
                         Valor_c:= Valor_c - VUnidad[fMascara];
                         end;
                    end;
               //acumulamos el total
               fEuro.VDesglose[fMascara]:= fEuro.VDesglose[fMascara] +

 PEuro(Lista.Objects[xIndice])^.VDesglose[fMascara];
               end;
          Dec(zIndice);

Síntesis Nº 8 – Abril 2002 10

Objetos auxiliares VI                                                                      



          end;//endbegin while

       if Valor_e > 0 then 
fEuro.VResto:= fEuro.VResto + StrToFloat(IntToStr(Valor_e));

       if Valor_c > 0 then fEuro.VResto:= fEuro.VResto + (Valor_c / 100);
       //hemos acumulado el valor de lo que no ha sido desglosado en la estructura
       //de totales
       end;

Concluido con éxito el algoritmo, procedemos a invocar el evento que permite actualizar el interfaz
gráfico.

   if Assigned(OnAfterChangeConversorEvent) then OnAfterChangeConversorEvent(Self);
end;

Abrir y Guardar un fichero en nuestro Conversor.

Si queremos que los resultados que almacena nuestro Conversor no desaparezcan al cerrar nuestra
aplicación, nos veremos obligados a crear los métodos adecuados para salvar el contenido a un fichero. Nos
basta para ello, dotar a nuestro objeto de un métodos LoadFromFile y SaveToFile, nombrados así por seguir
la linea que se inició desde la VCL.

Eso sí, queremos aprovechar todo lo que nos pueda ofrecer la clase TStrings, y en este caso concreto,
prácticamente nos va a solucionar aquellos detalles propios del almacenamiento o la apertura del fichero. 

Veamos como podemos guardar el contenido del conversor en un fichero:
procedure TConversorCambio.SaveToFile(const FileName: String);
var
StringTemp: String;
ListaTemp: TStrings;
S: Array [0..MAX_MASCARAS-1] of Char;
xIndice: Integer;
begin

Creamos una lista temporal. El motivo de crearla es porque dicho fichero almacenará en su primera
linea la situación [activa/no activa] de las máscaras mediante ceros (0) y unos (1). Hecho esto, resta asignar
a dicha lista temporal el contenido de la lista de nuestro conversor. Y ya en ese punto, generar la igualdad
añadiendo a la cadena de texto el carácter '=' seguido del valor decimal asociado a la cadena. No nos hace
falta nada más para reconstruir posteriormente la situación actual.

   ListaTemp:= TStringList.Create; //nos valemos de una lista temporal
   try
      //vamos a exigirle al conversor que al menos exista una seleccion de 2 máscaras
      if Contar_Mascaras < 2 then
          Raise EInvalidSeleccion.Create('Seleccion Máscaras debe ser mayor de dos');
      //tomaremos todo el contenido del miembro lista del conversor
      //incluidos los objetos. Estos nos serviran para recuperar los
      //valores asociados a cada lista
      ListaTemp.Assign(Lista);
      for xIndice:= 0 to MAX_MASCARAS-1 do //recorremos todas las máscaras
        if Buscar_Mascara(TMascaras(xIndice)) then S[xIndice]:= '1'
        else S[xIndice]:= '0';
      StringTemp:= 'MASCARA='+String(s); //ya tenemos la primera línea
      ListaTemp.Insert(0,StringTemp); //la instamos en primer lugar
      //Y recorremos el resto de lista para construir el resto de igualdades
      for xIndice:= 1 to ListaTemp.Count - 1 do

Síntesis Nº 8 – Abril 2002 11

Objetos auxiliares VI                                                                      



         if ListaTemp.Strings[xIndice] <> '' then
            ListaTemp.Strings[xIndice]:= ListaTemp.Strings[xIndice] +  '=' +
               FormatFloat('#0.00', PEuro(ListaTemp.Objects[xIndice])^.VEuros);
      ListaTemp.SaveToFile(Filename);//guardamos el fichero
   finally
      ListaTemp.Free;//y liberamos la lista temporal
   end;
end;

Reconstruir el estado del objeto conversor a partir de la carga del archivo, teniendo en cuenta que
somos capaces, (la clase TStrings incorpora dicha capacidad), de leer cadenas donde existe la igualdad '=',
es algo que resultará trivial. Podemos leer la primera linea y recuperar el estado de selección de cada una
de las monedas. Y podemos, tal y como hicimos en el método AgregarLista( ), generar los objetos
asociados a cada una de las cadenas en la lista temporal, y añadirlos finalmente mediante el método
AddObject( ) que implementa la clase TStrings. Tal que así:

Lista.AddObject(ListaTemp.Names[xIndice], Tobject(Dataeuro));

procedure TConversorCambio.LoadFromFile(const FileName: String);
var
  ListaTemp: TStrings;
  S: String [MAX_MASCARAS];
  xIndice: Integer;
  DataEuro: PEuro;
  fMascara: TMascaras;
begin
   ListaTemp:= TStringList.Create; //necesitamos una lista temporal
                                   //para leer las igualdades
   try

Nos valemos de un lista temporal en la que cargamos el contenido del archivo que vamos a abrir. ¿Hay
algo más sencillo?

      ListaTemp.LoadFromFile(Filename);//cargamos el fichero en la lista temporal
      //leemos el contenido del valor de la primera linea
      //que no es otro que la selección de máscaras almacenada en el fichero
      // Ejemplo: MASCARA=10010001110101
      // Un valor 1 nos indica que está activada y 0 que esta desactivada

Vamos a recuperar la máscara de ceros y unos que nos indica cuales monedas están activas. Así que nos
vamos a la primera de las lineas de la lista. ¡¡¡Aquí también nos podemos valer de las propiedades Names y
Values para hacerlo!!!

      S:=ListaTemp.Values[ListaTemp.Names[0]];
      fSeleccion:= []; //inicializamos la seleccion de máscaras
      //recorremos el string comprobando si esta activada o no

Un bucle para incorporar al conjunto fSeleccion las máscaras correspondientes...
      for xIndice:= 0 to MAX_MASCARAS - 1 do
         if S[xIndice+1] = '1' then
            fSeleccion:= fSeleccion + [TMascaras(xIndice)] //activamos la máscara
         else  //si no está activada la desactivamos
            if S[xIndice+1] = '0' then fSeleccion:= fSeleccion - [TMascaras(xIndice)]
            else Raise EErrorMascaras.Create('Error: formato no valido de archivo');
      BorrarLista;//ya podemos borrar el contenido de la lista de conversor
      //disponemos a inicializar la lista temporal con los valores recogidos
      //del fichero, creando la estructura de objetos

Y otro bucle para inicializar las nuevas estructuras y recoger los valores decimales sobre los que
operaremos.

Síntesis Nº 8 – Abril 2002 12

Objetos auxiliares VI                                                                      



      for xIndice:= 1 to ListaTemp.Count - 1 do
         begin
         New(DataEuro);  //reservamos memoria
         with DataEuro^do
               begin                   {y es guardado finalmente en el registro}
               VEuros:= StrToFloat(ListaTemp.Values[ListaTemp.Names[xIndice]]);
               VResto:= 0.0;
               fMascara:= MENOR_MASCARA;
               while fMascara <= MAYOR_MASCARA do
                    begin
                    VDesglose[fMascara]:= 0;
                    fMascara:= Succ(fMascara);
                    end;                                                            
               end;  

Vale. Ahora ya entregamos el resultado a la lista del objeto conversor                 
         Lista.AddObject(ListaTemp.Names[xIndice], Tobject(Dataeuro));

E incrementamos el contador.  
         Inc(fCount); {incrementamos el contador de lineas}
         end;
   finally

En cualquier caso, debemos asegurarnos de que se finalmente se libera la lista temporal. De la misma
forma procedemos a invocar el método para que se recalculen los desgloses. Ahora ya no hay necesidad el
método AgregarLista( ) porque el objeto conversor, en este punto, ya esta actualizado. Es una de las ventajas
que nos da encapsular la operatoria en un procedimiento.

      ListaTemp.Free;
      Calcular; //nos permitira crear la estructura de objetos y de totales
   end;
end;

Editando los datos

Para acabar, interesa comentar un pequeño detalle referente al Editor, expuesto en el capítulo anterior.
Hemos sobreescrito el constructor de la ventana frmDatos, donde se implementa el editor al que hacemos
referencia, para que pueda construirse de acuerdo a dos condiciones. Por un lado es necesario condicionar
(count > 0), tal y como observaréis en el código fuente, para discriminar la inicialización de variables en el
evento de creación del formulario a dos situaciones distintas, que nuestro editor no contenga inicialmente
ningun registro o que por el contrario sí que los deba contener, en cuyo caso, también necesitará en cual de
ellos de posicionarse. Este último dato se lo entregamos mediante el parámetro Posicion. 

constructor TfrmDatos.Create(AOwner: TComponent; carga: boolean; Posicion: Integer);
begin
inherited Create(AOwner);
fHazCarga:= carga;
Itemindex:= Posicion;
fConversor:= (AOwner as TConversorCambio);
end;

No son necesarios demasiados comentarios a las siguientes lineas en las que se crea de forma dinámica
la ventana modal que representa el editor y que, antes de su destrucción, nos permite saber la posición del
registro actual sobre el que nos posicionaremos al recobrar el foco en la ventana principal de la aplicación. 

function TConversorCambio.ShowEditor(Position: Integer): Integer;
var

Síntesis Nº 8 – Abril 2002 13

Objetos auxiliares VI                                                                      



Dat: TfrmDatos;
begin
     Dat:= TfrmDatos.Create(Self, (count > 0), Position);
     try
          if Dat.ShowModal = mrOk then BorrarLista;
          Result:= Dat.stg_Tabla.Row;
     finally
     Dat.Free;
     end;
end;

La despedida...

Han quedado algunas cosas en el tintero pero creo que es el punto ideal para dejar ya este pequeño
ejemplo que hemos compartido. Y pienso que los objetivos que marcamos al iniciarlo se han cubierto con
creces. :-)

Ya... se que lo podemos mejorar. Ahora mismo, mientras escribo estas palabras de despedida me
gustaría iniciarlo de nuevo y eliminar todo aquello que no me gusta, lo que me parece que puede ser
enfocado de otra forma más sencilla. De hecho, tengo que agradecer a Julio García y a Mario Rodríguez el
que me dieran algunos consejos para hacer más coherente el diseño. Seguro que mi torpeza no ha hecho
honor a sus comentarios.

Así que nos despedimos hasta el siguiente número de Síntesis en el que veremos el último de los
capítulos de la serie. Por fin... ea.   ;-) 

Síntesis Nº 8 – Abril 2002 14

Objetos auxiliares VI                                                                      


