Salvador Jover — mailto:s.jover@wanadoo.es

Objetos Auxiliares (y VII)

La ultima parada de este corto viaje... Nos dejamos
para el final de la serie la implementacion que hace
Delphi en los TDA s Pila y Cola. Y lo prometido es

deuda.

Es nuestro séptimo y dltimo capitulo, y un momento inmejorable para recapitular... ¢lo hacemos?

Atras, muy atrés, han quedado las listas de punteros representadas en la clase TList, que fueron motivo
de andlisis en los dos primeros nimeros de la serie. Avanzamos un paso adelante y nos introducimos en las
listas de cadenas, cuyo mayor exponente pudiera estar representado en la clase TStrings. Eran el tercer y
cuarto capitulo de la misma, y completaba lo que pretendia ser este acercamiento a algunos de los TDA"s
mas basicos. Recordad, ademas, que se completaba esta serie sobre lo que Borland definia como Objetos
Auxiliares, con el articulo que nos brindaba nuestro compafiero Carlos Conca en el nimero 4 de esta
publicacion: ¢Ficheros de configuracion o Base de Registros?. En dicho articulo se comentarian aquellas
clases especializadas en la manipulacion de los valores del registro de Windows y ficheros Ini, como son
TIniFile y TMeminiFile, o TRegistry y TRegistrylniFile.

También hemos podido compartir con nuestro incansable e incombustible compafiero Mario Rodriguez,
bien acentuado en la i para que no se me queje :-) , la visién que nos proporcionaba la éptica de otro
compilador, como lo es C++ Builder sobre los mismos TDA's.

Y ya para terminar, abordamos un pequefio ejemplo que nos dejé en el quinto y sexto capitulo unas
pinceladas de uno de los principales descendientes de TStrings, la clase TStringList.

Y aqui, después de seis agotadores e interminables capitulos, nuestra parada merecida. Este va a ser el
punto final (;existe ese punto?) a nuestro pequefio viaje.

JY laalegria...?

Dejémonos de tristezas; ya me conocéis, e intentemos dar un toque de gracia a este Ultimo rato que
vamos a compartir: un poco de alegria para unos botones que corren los cien metros lisos...

TOrderedList: nuestro primer objetivo.

Iniciamos estas lineas con un comentario previo: La unidad contnrs.pas es introducida a partir de la
version 5 de Delphi. Antes de esta version no existia, como no existian ninguna de las clases que introduce
dicho modulo. Asi pues, y dada la imposibilidad de distribuir con las fuentes dicha unidad, en principio el
ejemplo tan solo se “podria” compilar desde dicha version de Delphi... Asi, por favor, tenedlo en cuenta.

Recordais la figura 1 del primer articulo de la serie...?

Yo desde luego, no. Asi que me he cogido dicho ejemplar y lo he abierto por la pagina 11 y se lee al pie
de la figura: “Relacion jerarquica de los objetos relacionados con las listas”. En ella podemos observar
como las clases TQueue y TStack son descendientes de TOrderedList, y esta Gltima, cliente de TList. Es
decir: TOrderedList, que desciende directamente de TObject, hace uso de una lista de punteros. Y las clases
TQueue y TStack son descendientes de la anterior. Es asi de sencillo pero quiza en este punto valdria la
pena preguntarse el por qué. La justificacion queda mas o menos clara tras analizar la declaracion que hace

Lo més basico de Delphi 1

mailto:dejover@eresmas.com

Objetos Auxiliares (y VII)

la clase TList y compararla con la que hace la clase TOrderedList. Y es que, a nuestra lista ordenada se le
piden cosas distintas y una gran parte de los métodos que publica TList ya no se hacen necesarios. No
necesitamos ordenamiento alguno... sobraria entonces el método Sort... No necesitamos intercambiar
referencias... sobraria Exchange()... Ni borrado... sobraria Delete()... etc...

En realidad, lo Gnico que se le pide a la clase TOrderedList es que implemente las acciones que han de
caracterizar de forma conjunta a los TDA’s Pila y Cola: ser una estructura lineal (LIFO en el primer caso y
FIFO en el Gltimo).

Asi pues, la solucion inmediata es que la clase TOrderedList haga uso de una variable de tipo TList,
donde pueda almacenar todos y cada uno de los punteros de forma ordenada. Y declarando dicha variable
como campo privado de nuestro nuevo objeto, conseguimos que todos los métodos que hace publicos TList
gueden ahora ocultos.

¢Vemos la especificacion?

TOr deredLi st = cl ass(TObj ect)
private
FLi st: TList;
pr ot ect ed
procedure Pushlten{Altem Pointer); virtual; abstract;
function Popltem Pointer; virtual;
function Peekltem Pointer; virtual;
property List: TList read FList;
public
constructor Create;
destructor Destroy; override;

function Count: Integer;
function AtLeast (ACount: Integer): Bool ean;
procedure Push(Altem Pointer);
function Pop: Pointer;
functi on Peek: Pointer;
end;

Ahora posiblemente se puede observar con mas claridad. ¢{Os dais cuenta de que el método Pushltem,
declarado como abstracto y virtual en TOrderedList, va a ser el inico método que sobrescriben nuestros dos
descendientes?

TStack por un lado:

TStack = cl ass(TOrder edLi st)
pr ot ect ed

procedure Pushlten{Altem Pointer); override;
end;

Y TQueue por otro:

TQueue = cl ass(TOr deredLi st)
pr ot ect ed

procedure Pushlten{Altem Pointer); override;
end;

La especificacion Pila nos pide que cada elemento (puntero) afiadido a la lista, permanezca en la cima
de ella (LIFO — EI ultimo en entrar es el primero en salir) en tanto no sea afiadido un nuevo elemento, y no
sea accesible el resto de elementos si no es retirado de la misma. Ahora quedan sin sentido cualquier método
que intente acceder al interior de la lista, por definicion.

Es facil de comparar estos puntos si analizamos la implementacion que hace TStack del método
Pushltem():

procedure TStack.Pushlten{Altem Pointer);

Lo més basico de Delphi 2

Objetos Auxiliares (y VII)

begin
Li st. Add(Altem;
end;

Afadimos al final de la lista la nueva variable de tipo Pointer, o puntero, obteniendo una nueva CIMA.
No hay mas...

Por el contrario, la especificacion Cola nos pide que cada elemento (puntero) afiadido a la lista, sea
insertado en la primera posicién, y no al final de misma como sucedia en el TDA Pila. Si el TDA Pila
simbolizaba visualmente una coleccion de objetos apilados unos sobre otros, que hacen imposible la retirada
de un elemento inferior si no son retirados antes los posteriores, el TDA cola y por poner un ejemplo méas
real se asemejaria a la cola de personas que se produce ante la llegada del autobus, y que esperan
impacientes el turno para subir en el mismo. Los primeros en incorporarse a ella van a ser los primeros que
la abandonen y cualquier intento de un elemento por adelantar posiciones puede ser recriminado por el resto
de elementos.
procedure TQueue. Pushlten{Altem Pointer);
begin

List.lnsert(0, Altem;
end;

El nuevo elemento es claramente insertado en la primera posicion y sera forzosamente el Gltimo en salir
de la misma. Cualquier otra insercion, adelantara en una posicion el elemento afiadido anteriormente.

Como nota aclaratoria y para no liarnos en la consideracion del primer o ultimo elemento de la lista,
establezco como primer elemento de la misma la posicion cuyo indice toma como valor 0. El ultimo
elemento de la lista, segin este criterio, habria de ser aquel que representara la posicién enésima en dicho
vector. A este ultimo elemento le denominaremos CIMA. Dicho esto, nos serd mas facil entendernos.

Puntos comunes: un lugar de encuentro...

Podemos, y lo vamos a hacer, proceder al analisis de la implementacion que se hace en cada uno de los
métodos de la clase TOrderedList, de forma analoga a como lo hemos hecho en articulos anteriores.
Tenemos, o tengo, que suponer que el lector, y hablando de forma menos impersonal, ti que vas a sentarte a
leer estas lineas que estamos compartiendo, ya conoces los métodos que publica la clase TList. De no ser
asi, y dado que los voy a nombrar sin demasiado entretenimiento, te rogaria que hicieras una lectura previa
de los dos primeros articulos.

Sin més predAmbulos podemos contemplar la creacion y destruccion del objeto motivo de nuestro
estudio.

constructor TOrderedList. Create;
begin

inherited Create;

FLi st := TList. Create;
end;

destructor TOrderedLi st. Destroy;

begin

Li st. Free;

i nherited Destroy;
end;

Nada tiene de especial que le haga blanco de nuestro interés. Se crea y se destruye el objeto de clase
TList y se hace necesaria en ambos casos, una llamada al constructor y destructor heredado. En el primer
caso, construira la parte del objeto sobre la que nos apoyamos para construir el nuestro, el ascendiente. En el
segundo caso, hara posible la destruccion de dicho ascendiente toda vez que hemos destruido la lista. En

Lo més basico de Delphi 3

Objetos Auxiliares (y VII)

cierta forma se comparte un mismo pensamiento: “ocupate tu de tu parte que yo me ocupo de la mia...”. Asi
de claro, ¢no? :-)

Anadir un elemento a la lista.

Comentabamos anteriormente que tanto la clase TStack como TQueue, redefinian un método declarado
como abstracto en la clase que nos ocupa. TOrderedList hace publico el método para insertar un nuevo
elemento en FList, y deja que sean ambos descendientes los que nos digan de que forma va a ser insertado el
nuevo elemento: al principio de la lista o al final de la misma.

Estamos hablando del método Push():

procedure TOrderedList.Push(Altem Pointer);
begin

Pushlten(Altem;
end;

Pushltem(), como método abstracto que es, ademas de virtual, permite ser redefinido y lo que es mas
importante: ser considerado como método abstracto delega la implementacion del mismo en los
descendientes. De hecho, esta clase no podria por dicho motivo ser instanciada sin generar la consabida
excepcion... No. Esto no es del todo cierto. Estd mal interpretado. Es lo que diria posiblemente en una
tertulia entre amigos. Realmente podriamos instanciar un objeto que contenga métodos abstractos.

Suponed que hacemos una implementacion tal que asi al pulsar un objeto Button1:

var
lista: TOrderedList;
begin
lista:= TOrderedList. Create;

try
Showvessage(I nt ToStr(lista.count));
finally
lista.free;
end;

end;

Es decir que la pulsacion del boton nos mostraria que la lista contiene 0 elementos. No habria excepcion
de ningun tipo. Eso si, nuestro compilador nos mostraria un hermoso Warning que no nos impediria lanzar
la ejecucion del programa:

[Warning] Unitl.pas(31): Constructing instance of 'TOrderedList' containing abstract methods

Sin embargo, cualquier intento de usar el método declarado como abstracto :
lista.Push(button2); en lugar de ShowMessage(lntToStr(lista.count));

Si generaria la excepcién. Concretamente:

Proj ect Projectl. exe raised exception class EAbstractError with nessage 'Abstract Error'.

Consultar un elemento de la lista.

Sabiendo que la Unica diferencia real entre un TDA Pila y un TDA Lista es la forma en que se van a
introducir cada elemento nuevo, podemos entender que sea compartida la forma en la que se obtiene la cima
de la lista de punteros. En ambos casos vamos a obtener un puntero al Gltimo de los elementos que

Lo més basico de Delphi 4

Objetos Auxiliares (y VII)

componen la lista. El método Peek invocara en su implementacion a Peekltem, declarado como virtual en la
zona protegida de la clase. Esto nos permite su redefinicion en un descendiente. jBueno es saberlo!

function TOr deredLi st. Peek: Pointer;
begin

Result := Peekltem
end;

function TOrderedLi st. Peekltem Pointer;
begin

Result := List[List.Count-1];
end;

Aqui podemos recordar como el dominio de cualquier propiedad matricial se iniciaba en cero y se
extendia hasta (n-1). Como valor de retorno, obtenemos el puntero al elemento esperado. Por eso debemos
saber también que, de intentar obtener la CIMA de la pila o de la cola en situaciones en los que no
contengan algun elemento, obtendriamos un hermosa excepcion lanzada por FList.

Project Projectl.exe raised exeption class EListError with nessage 'List Index Qut of
Bounds (-1)'...

Este mensaje es obtenido desde el IDE de Delphi. La ejecucion del exe fuera del compilador
simplemente haria emerger una ventana remarcando el texto encerrado entre comillas simples, como bien es
sabido.

Pocas explicaciones merecen: Si (Count = 0), que es precisamente el valor que tiene dicha propiedad
cuando tanto la Pila como la Cola no contienen elemento alguno, intentariamos acceder a posiciones del
vector para las que se establece en la implementacion de la clase TList el lanzamiento de una excepcion.

Extraer un elemento de la lista.

Hemos hablado de consultar el valor del elemento CIMA. Necesitamos légicamente también
implementar un método que nos permita eliminar los elementos de la lista. En ambos casos, por definicion
ha de ser eliminado tan solo el elemento CIMA. Al igual que anteriormente, la interfaz declara un método
publico Pop, y un método protegido Popltem, que podra ser redefinido en un descendiente.
function TOrderedLi st. Pop: Pointer;
begin

Result := Popltem
end;

function TOrderedLi st. Popltem Pointer;

begin

Result := Peekltem

Li st. Del et e(Li st. Count-1);
end;

Sencillo, ¢no...?

En primer lugar consultamos el elemento CIMA, obteniendo un puntero hacia el mismo. En segundo
lugar invocamos el método Delete de TList. Y ¢sabéis lo que pasa cuando se invoca el método Pop sobre
una lista con 0 elementos?

Efectivamente. Es de recibo lo dicho anteriormente para Peek. Obtenemos una hermosa excepcion en la
gue se comunica que el valor (-1) esta fuera de rango: ‘List Index of Bounds (-1)'.

Asi pues, si queremos dejar de obtener estas magnificas alertas deberemos comprobar que tanto nuestro
objeto Pila como nuestro objeto Cola, contienen al menos algun elemento

Lo més basico de Delphi 5

Objetos Auxiliares (y VII)

Obtener el nimero de elementos y otras comprobaciones.

Imagino que se entiende.
funci 6n TOrderedLi st. Count: |ntegre;
begin
Result := List. Count;
end;

No creo que nadie levante la mano para pedir que se lo explique... ;-)

Sin embargo también se nos ofrece un método para obtener si la posicion del elemento consultado (el
parametro que recibe de entrada) es menor o igual al nimero de elementos actual. En mi humilde opinion,
gue no deja de ser la de un aficionado con muchas ganas de compartir, no se estrujaron demasiado la cabeza
y casi por pitorreo lo dejaron caer:
function TOrderedLi st. At Least (ACount: integer): bool ean;
begin

Result := List.Count >= ACount;
end;

Supongamos que recibe como parametro el valor 7; de tener 8 elementos nos devolveria Verdadero. Sin
embargo para valores menores que cero también devuelve Verdadero. jBonita cuestion... como diria mi buen
amigo Mario!.

Un poco de ejercicio por favor...

¢Queréis que practiquemos un poco con todo esto que hemos comentado? Un poco de ejercicio no nos
vendré nada mal. Asi que hemos sacado unos cuantos botones a calentar y andan por ahi estirando musculos
en el centro de la pista.

Sl Ie eChéiS un ViStaZO a 2, GRUPD ALBOR: Ejemplo bastante estupido sobre el uso de TStack ¥ TQueue =]

Ia figura 1 y al ||5tado 1 |0 ﬁ:l:ogt::i:sr z?ﬁ:;ilg:l'el:_ competicion de Botones tienen que haber al Consultar E stado: PILA

Vé.is a entender. NO hay : _ : - : PEEK Fila apunta a Batond

desperdiCiO. i+ participantes: A la parrilla | Salida | COUNT Fila cue”ta‘”erj':um
La idea que mueve este PEEK Colavaci

pequefio ejemplo es Ll COUNT Cola vacia

simplemente la de practicar 2|

un poco con los métodos que il

publican tanto la clase Ll

TStack como la clase
TQueue. No vamos a
detallar paso a paso cada
uno de los métodos que se
han implementado. De
hecho, comento en el cédigo
fuente de la unidad con cierto detalle cada una de las lineas que se han escrito, por lo que en cierta forma
resulta innecesario repetirlo aqui.

Figura 1 - Figurada carrera de botones. Interfaz gréafico

unit stack_queue;
interface

uses

Lo més basico de Delphi 6

Objetos Auxiliares (y VII)

W ndows, Messages, SysUtils, d asses, Graphics, Controls, Forns, Dialogs,
StdCtrls, contnrs, ExtCtrls;

const
max_partici pantes = 8; /I numero maxi o de botones participantes
separaci on = 5; /| maxi ma separaci 6n entre botén y botdn

type

TTi mer Li st = cl ass(TTi ner)
private
FLista: TList; //lista que al berga una referencia a cada uno de | os botones
public
constructor Create(aOmer: TConponent); override;
destructor Destroy; override;
property Lista: TList read FLista wite FLista;
end;

TfrmO i npi adas = cl ass(TForm

procedur e FornCreate(Sender: TOhject);
procedur e FornDestroy(Sender: TObject);
procedure btb_creardick(Sender: TObject);
procedure btb_salidadick(Sender: TObject);
procedure btb_parrilladick(Sender: TCbject);
procedure btb_cancel ard i ck(Sender: TCbject);
private
Li sta_botones: TTinerList; // nos ayuda en el novimiento de |os participantes.
pila: TStack; // alnacena |os participante y facilitara su alineacion
cola: TQueue; // almacena la |legada de |os participantes y enmite resultado
corredores: Integer; //nunero de corredores que han |l egado a neta
procedure TinerAction(sender: TObject); //Evento on Tiner
procedure MstrarResul tados; //nuestra |os resultados

procedur e Rei nici ar Juego; /lpara reiniciar el juego
public
end;

Li stado N° 1: Decl araciones de tipos en las clases TTinerList y TfrmQd inpi adas.

Si relataremos, aunque sea de forma breve, lo que hace el programa, de forma que podais tener una
mejor idea del mismo, previa a la lectura de las fuentes. La idea principal era hacer uso de los principales
métodos que publican tanto la clase TStack como la clase TQueue, y para eso, implementamos una ficticia
carrera en la que los participantes habran de ser botones, pequefios y bien cuadrados. Perdonad si es una
solemne majaderia pero es que no se me ocurria otro ejemplo mejor. ¢vale? :-)

Asi pues, el procedimiento btb_CrearClick, ejecutado al pulsar el botén para afiadir un nuevo
participante, ha de crear las nuevas instancias de TButton, que representa cada nuevo participante hasta un
nimero maximo de ocho. En este punto damos ya uso a nuestra variable de tipo TStack que sera
incrementada a medida que se incorpora un nuevo corredor a la figurada carrera. Hacemos uso de los
métodos Push() y Peek en la instancia de la variable Pila.

Posteriormente, nos podréa servir esta lista (pila) para reordenar cada uno de los botones creados en la
linea de salida. Vedmoslo:

procedure TfrnO i npi adas. btb_creard i ck(Sender: TObject);

var

bot on: TButton;

begin
/1 solo mientras no rebasenps el numero de partici pantes nmaxi nos
/1l Hay que tener en cuenta que en este nomento Count de la pila

Lo més basico de Delphi 7

Objetos Auxiliares (y VII)

/'l devuelve 0 por |lo que inicianps |a cuenta desde dicho val or

if pila. Count <= nax_participantes - 1 then
begin
boton: = TButton. Create(self); // creanps el boton (CON PROPI ETARI O
Li st a_Bot ones. Li sta. Add(boton); // y lo afadi nos al tenporizador
boton. parent:= self; // un padre para el nuevo boto6n
bot on. name: = ' Boton' + IntToSTr((pila.count + 1)); // y nonbre y todo
bot on. caption:= IntToStr(pila.count + 1); // un ro6tulo nunérico
bot on. Font. Styl e: = boton. Font. Style + [fsBold]; // que se vea bien !!
/1 cuadradito to...
bot on. hei ght: = 25;
bot on. wi dt h: = 25;

if pila.Count >= 0 then // si hay referencias en la pila
begi n
/1 fijanps | a posicién en altura del boton
boton. top: = bevel 1.top +
separaci on +
(separacion * pila.count) +
(pila.count * boton. Height);
/1 ajustanps la altura del marco tanbién
bevel 1. Hei ght: = separaci on +
(separacion * (pila.count + 1)) +
((pila.count + 1) * boton. height);
/1 1o dejanpbs entrenar en |la pista hasta |la salida
boton.l eft: = randon(bevel 1.width - bevel1l.left - boton.wi dth) +
bevel 1.1 eft +
separ aci on;
/1y dinensionanpbs correctanmente el form
frmQd i npi adas. hei ght: = bevel 1.top +
bevel 1. hei ght +
bot on. hei ght +
separaci on
end;
pil a. push(boton); // afiadinmos una referencia a |la pila para finalizar
/] actualizando | os avi sadores
| ab_ppeek.caption:= 'Pila apunta a ' + TButton(pil a. Peek). nane;
|l ab_pcount.caption:= "Pila cuenta ' + IntToStr(pila.count) + ' refs.'
/1 y el nunero de participantes en la carrera
Inc(corredores);
end;
/1 solo dejanpbs iniciar la salida si hay mas de tres corredores
btb_parrilla.enabled:= (pila.count >= 3);
end;

Si disponemos de, al menos, tres botones creados, podremos hacer uso del procedimiento
btb_parrillaClick, asignado al evento OnClick del botén cuyo caption es 'A la parrilla'. El uso de la pila nos
facilita obtener una referencia rapida a cada uno de los botones participantes, tras la invocacion del método
Pop. Esto tiene como consecuencia logica que a medida que resultan alineados los botones en la linea de
salida, la pila sera vaciada.

Para poder entonces realinear en dicha linea de salida, toda vez que se haya iniciado la carrera y
deseemos cancelar la misma mediante el boton cuyo caption es “Cancelar”, se hara preciso pues, restaurar la
pila apuntando a cada una de las referencias, tal y como estaba antes de iniciarse la misma.

Otra cosa resefiable es que se puede hacer preciso en muchas ocasiones contar los elementos que
contienen la pila y evaluar si ésta estd vacia o no. Es lo que hacemos cuando escribimos la condicién que
aparece en la primera linea (Pila.Count > 0) ¢Hay algin elemento en la pila?.

Esa serd nuestra condicion para seguir extrayendo referencias a los botones participantes que nos
permitan ordenarlos.

while (Pila.Count > 0) do
TButton(Pil a. Pop). Left:= Bevel 1. Left + separacion

Lo més basico de Delphi 8

Objetos Auxiliares (y VII)

procedure TfrnO inpiadas.btb_parrilladick(Sender: TObject);
begin
/'l estado de | os botones
btb_sal i da. enabl ed: = (Pila.Count > 0); // salida activo si hay referencias
/'l una vez alineados, ya no es tienpo de realinear o afadir mas botones
/1 Se ha cerrado |a participaci6n..
bt b_crear. enabl ed: = Fal se;
btb_parrilla. enabl ed: = Fal se;
/'l procedenps a ordenar |os botones
while (Pila.Count > 0) do
TButton(Pil a. Pop). Left:= Bevel 1. Left + separacion
/1 y anuncianpbs |a nueva situacién de la pila
| ab_ppeek. caption:= 'Pila vaci a'
| ab_pcount.caption:= 'Pila vacia';
end;

Nos falta dar el pistoletazo de salida. Via libre... Se ha iniciado la carrera.

procedure TfrnO inpi adas. btb_sal i dad i ck(Sender: TObject);
begin

Li st a_bot ones. Enabl ed: = True; // tenporizador activo

bt b_sal i da. Enabl ed: = Fal se; /1 desactivanmps | a salida

btb_cancel ar.visible:= True; // permtinps cancelar si es necesario
end;

Un poco de movimiento por favor.

Toda vez que se ha iniciado la carrera, hemos llegado al procedimiento que nos sirve como motor del
movimiento de los corredores en la pista: nos basta una sencilla invocacion del generador de numeros
aleatorios Random() para incrementar el avance de cada participante. Estamos hablando del evento
OnTimer y del procedimiento implementado para el temporizador que lo genera.

No comentaria quizas este procedimiento si no fuera porque nos sirve para hacer uso de la clase
TQueue. Para nosotros en este momento, la variable Cola nos ayudara a capturar la entrada de cada uno de
los participantes por linea de meta. De igual forma nos va a ayudar a montar el resultado final de la carrera
de botones pero eso lo podremos ver en el procedimiento MostrarResultados..

procedure TfrnO inpi adas. Ti ner Acti on(sender: TObject);
var
xI ndi ce, ylndice: |nteger;
boton: TButton
begin
Appl i cati on. ProcessMessages;
/I mentras exi stan botones en el tenporizador
if Lista Botones.Lista.Count > 0 then
begin
/lrecorrenps la |lista para obtener una referencia a ellos
for xlndice:= 0 to Lista_Botones.Lista. Count - 1 do
begi n
Appl i cati on. ProcessMessages;
/I obtenenos | a referencia al objeto actua
bot on: = TButton(Li sta_Botones. Li sta[xl ndi ce]);
/1si no ha |legado a META (ne vale tocarla con el extreno)
if boton.Left + boton.Wdth <= bevel 1.width then
/I procedenps a despl azarlo al eatori anente
bot on. Left: = boton. Left + Random(15)

Lo més basico de Delphi 9

Objetos Auxiliares (y VII)

else //en caso contrario

begin

{aprovechanos el tag del boton para detectar si e

objeto a Ilegado a neta. Si lo ha hecho, su tag

val dra 1}

If boton.tag = 0 then /1 si no ha |legado a neta
begi n
/'l 1o incorporanpbs a |a cola de resultados
col a. Push(Li sta_Bot ones. Li st a[xI ndi ce]);
/1 1o anuncianmps en |la etiqueta |a incorporaci 6n

| ab_cpeek. caption:= 'Cola apunta a ' + TButton(col a. Peek) . nane;

/'l actualizanps |a etiqueta contador de referencias

| ab_ccount.caption:= 'Cola cuenta ' + IntToStr(col a.count) + '
/1 mnoranos en un corredor |os participante ptes. de |l egada

Dec(corredores);
If corredores = 0 then //si han |l egado todos
begin

Refs.';

Li sta_Bot ones. Enabl ed: = Fal se; // desactivanps el tenporizador

/1 los resituanos en la linea de salida
for ylndice:= 0 to Lista_Botones.Lista. Count - 1 do

TButton(Lista_Botones. Lista[ylndice]).Left:= bevel 1. Left +
separ aci on

/1l nostranos |os resultados de la carrera

Most r ar Resul t ados

/1 y reinicianps el juego por si se quiere repetir
Rei ni ci ar Juego

Exit; // jjvanonos fuera de procedimento !! jjhenos acabado!

end;

/'l este boton ya ha cruzado |a META

i f Assigned(boton) then boton.tag: = 1;
end;

end;
end;
end;
end;

Y tan solo nos queda comentar el procedimiento que muestra los resultados y que es invocado tan
pronto como han sobrepasado la linea de meta todos los botones. Igualmente podemos hacer uso de nuestro
objeto TQueue para obtener cada uno de los participantes en el mismo orden en que han llegado a meta.
Extraemos sucesivamente y mientras Count sea mayor que 0, los punteros hacia cada uno de los botones.

Montar la cadena para mostrarlo y poco mas.

procedure Tfrn0O inpi adas. Most rar Resul t ados;
var
cadena: String;
ganador: String
cont ador: | nteger;
begin
/'l ¢querenos ver |os resultados?

I f Messagedl g(' ¢Quieres ver los resultados de la carrera?:', ntlnformation
nmbCancel], 0) = mCk then
begin
cadena: = '"';

cont ador: = O;
/1 obtenenps el nonbre del objeto "cinma" de la "col a"
/'l Peek nos devuel ve una referencia al msno que nol deanbs para

/1 obtener dicho nonbre. El puntero NO es renovido, solo consultado

ganador: = 'EL GANADOR ES ' + TButton(col a. Peek) . Naneg;
/1 mentras queden referencias
whil e col a. Count > 0 do
begi n
Inc(contador); // nos da la posicion de |l egada
/'l vanps extrayendo (POP) y elimnando cada una de |as
/'l referencias, (el orden es el de || egada)

Lo més basico de Delphi

[bk,

10

Objetos Auxiliares (y VII)

cadena: = cadena + IntToStr(contador) + ': ' + TButton(col a. Pop). Nane + #13#10;
end;

cadena: = cadena + #13#10 + ganador;

/1 y visualizanps toda | a cadena de resultados

Showessage(' Resul tados de |a carrera: '#13#10 + cadena);

end

else // si no querenpos ver |os resultados tanbién...
whil e col a.count > 0 do col a.pop; //vacianos |a "cola"
end;

Resumiendo. Estos son los pasos que hemos seguido y que posteriormente, si 10 desedis, tenéis en las
fuentes que acomparian a articulo:

¥ Creacion de los botones. Seincrementala pila con unareferencia alos mismos.
1 Mediante la pilareordenamos los botones en lalinea de salida.

1 La carrera tiene lugar... aun puede ser cancelada. La llegada a meta incrementa la cola con una
referencia a cada uno de los botones.

1 Hacemos uso de la cola de resultados para obtener € orden de llegada a Metay visualizarlo al usuario.

Vamos finalizando: dos reflexiones rapidas y acabamos...

La primera reflexién que se me ocurre, es apreciar lafacilidad con la que podemos incorporar €l uso de
listas de punteros a nuestros desarrollos. En nuestro caso particular, € que nos ocupa en estos momentos,
queda simplificado més aun, dado que €l objeto asociado a ellas establece un propietario, owner, con la
responsabilidad de su destruccion. Nos despreocupamos de una gran parte de trabajo. Si recordais también,
en algunos de los gjemplos que hemos expuesto en capitulos anteriores, a contrario que el actual, haciamos
uso de estructuras y reservdbamos para ellas memoria dinamica. Eso, |6gicamente nos obligaba a
cerciorarnos de que la memoria asociada a la misma era liberada antes de la destruccion de lalista. Ahorano
nos ocurre y serd asi siempre y cuando dichos objetos sean descendientes de la clase TComponent, la
primera clase que implementa el owner o propietario.

Para los que nos iniciamos, estas unidades que resultan ciertamente mas sencillas que las anteriormente
vistas, ofrecen pequefios detalles que es bueno empezar a apreciar. Cabria reflexionar sobre como se ha
declarado un método publico, envolviendo al método protegido y virtual. Era el caso del método Pop. Detrés
de su invocacion se escondia una llamada a Popltem, declarado como protegido y virtual. Esto nos permitira
en un futuro redefinir el mismo en un descendiente.

Bueno. Ahora si que tenemos que despedirnos. Ahora ya no os puedo decir eso de: ¢seguro que esta
historiaacaba aqui...? ;-)

Me siento muy honrado de haber compartido este rato con todos vosotros. Recibid un abrazo,

Lo més basico de Delphi 11

http://www.grupoalbor.com/Prontuario.htm

