Salvador Jover - salvador@sjover.com

Modales por favor... (Parte I)

Salvador Jover salvador@sjover.com

Vamos a hablar, en esta ocasion, sobre algunos
aspectos de las ventanas modales y sobre algunas
de las cosas que siempre se dicen, porgue todo el

mundo las conoce. (0 no...?

Introduccion increiblemente basica.

Las primeras lineas de cualquier escrito suelen ser cruciales para quien las escribe, porque no siempre
se tiene clara la forma mas correcta de enfocarlas, en este caso concreto en forma de articulo, si es que se me
permite la licencia de llamarlo asi. Si el tema es complejo porque es complejo..., y si es absurdamente
sencillo porgue es sencillo... pero el caso es nunca ponerse de acuerdo. De cualquier forma, estas lineas van
dirigidas a las personas que se inician en Delphi, que dan sus primeros pasos en el entorno, y no dudo que
resultaran obvias para muchos comparieros, teniendo en cuenta que las cuestiones que se pueden plantear,
obedecen a los primeros meses de nuestra experiencia en la herramienta. Yo al menos lo veo asi.

Hoy en dia, afortunadamente, existe informacion abundante en Internet sobre cualquier tema
relacionado con Delphi: desde los -digamoslo- normales, hasta los mas rebuscados. Trucos, fags, foros, una
patada y surgen como setas, pero siempre me queda la idea de que en el fondo, en algunos la idea que
subyace no es aprender... sino solucionar una necesidad. Las necesidades son importantes y hay que
cubrirlas pero a la larga tenemos el peligro de convertirnos en buscadores: buscadores de trucos, de
informacion répida, de recetas milagrosas... Y prueba de ello son algunas de las webs donde se hacinan
componentes y componentes, miles, apretufiados bajo un cartel que dice algo asi como: jlo que necesites
estd aqui... por algun lado pero te aseguro que esta! Ni el que lo ha puesto sabe ya lo que tiene... y la verdad
es que tampoco creo que le importe demasiado.... Y en los foros de Delphi, creo que se respira en ocasiones
parecidos aires, fruto de la misma mentalidad: llegan a ser hasta graciosas algunas preguntas del tipo “tengo
que entregar una aplicacion mafiana a las 5 y ando perdido... asi que necesitaria que me enviaseis todo el
codigo fuente que tengais sobre ... (aqui la peticion). No me dejéis tirado porque de verdad que es muy
urgente....”. Nosotros... tu y yo no tenemos tanta prisa.

Empecemos a pensar un poco, y centremos -Si 0S parece- nuestra atencion en el tema que nos
ocupa... Es dificil suponer gque la accion se desarrolle siempre sobre una Unica ventana, ficha o Form, (a
gusto vuestro como querais llamarla), aunque esto no es cierto del todo, o0 es una verdad a medias. Existen
-por ejemplo- las aplicaciones de tipo consola, los servicios, etc., o incluso podriamos considerar si queréis
rizar el rizo, la existencia de una Unica ventana y jugar con la creacion de Frames, que nos permite trabajar
en tiempo de disefio, pero por lo general, y en un buen nimero de casos, por no decir en todos, el flujo de
nuestro programa dependera de una ventana principal y una serie indeterminada de ventanas, que seran, o
bien creadas, o bien activadas en demanda de esta. Es el esquema mas habitual. El interfaz de usuario que
conocemos, compuesto normalmente por un mend y por varias barras de botones, situadas en la parte
superior del area cliente de nuestra ventana. Si al final hay entre los lectores algun purista que acabe
diciendo que “todo” es una ventana en Windows y ... jpero bueno!, entre nosotros y para andar por casa creo
que se puede asumir el llamar “ventana” a los descendientes de la clase TForm, al menos dentro de este
contexto. Si 0s parece vamos a suponerlo asi. Es posible que en articulos posteriores, podamos hacer un
hueco pequefio para hablar de los frames (TFrame), que comparten en la jerarquia de la VCL con respecto a
TForm, una misma ascendencia hasta la clase TscrollingWinControl. Ahora estamos abordando el tema

Lo méas basico de Delphi 1



Salvador Jover - salvador@sjover.com

concreto desde la perspectiva de las ventanas Modales, que son aquellas, segun la guia misma de
Desarrollador en Delphi 5, “en las que el usuario debe efectuar alguna acccién antes de pasar a otra
ficha...”, una definicion algo estrambdtica para denotar simplemente, que la ventana debe obligatoriamente
ser cerrada para que nuestro usuario pueda acceder al resto de ventanas de nuestra aplicacion. En tanto
permanezca abierta dicha ventana, nuestro usuario se obligara a ejecutar determinadas acciones en el modo
previsto por el desarrollador, en una actitud un tanto dictatorial si cabe y recordando aquella actitud que
manteniamos frente a las aplicaciones de MSDos. Por el contrario, las ventana no modales, son aquellas que
pueden ser activadas o desactivadas a discrecion del usuario, sin necesidad de que sean cerradas para
entregar el foco a cualquier control de otra ventana que permanezca oculta tras ella

Nuestro supuesto de trabajo, es que estais dando vuestros primeros pasos en Delphi. Ya conocéis el
marco de trabajo y la mecéanica de operacion con la fichas en tiempo de disefio, por lo que, habéis pasado
determinado ndmero de horas afiadiendo componentes y modificando sus propiedades en el inspector de
objetos. Habéis hecho ya vuestras primeras aplicaciones: desde el boton que responde a la pulsacién con el
socorrido “Hola Mundo...” hasta la primera calculadora, o el programa de dibujo que despliega una linea o
un rectangulo sobre el canvas de nuestra ventana. jjMira que puede uno pasar horas haciendo esto!! Todos
hemos pasado por esos puntos, en ese o en distinto orden, y como todos, existe un dia en el que se nos
plantea una aplicacion que necesita de mas de un ficha o Form. Ese es nuestro punto de partida... hagamos
nuestra primera parada si os parece.

Cuando necesito mas de una ventana...

Vamos a empezar por el principio: Abrimos el entorno de Delphi y nos situamos en la opcion
File/New y ya dentro de ésta, elegiremos Application. Inmediatamente se abrird un nuevo proyecto que por
defecto tomard como nombre Projectl, y serd cargada en memoria una nueva ficha (Forml) que
representard la ventana principal de nuestra aplicacion. La parte visual de esta ficha esta representada en la
ventana de disefio del entorno, responsable de que podamos insertar aquellos componentes que deseemos
formen parte del interfaz de nuestro usuario, en tiempo de disefio. llusion éptica al fin y la cabo, si acabais
descubriendo la otra vista de la misma ventana de disefio y que se corresponde con el fichero de texto dfm.
Y por otro lado, el inspector de objetos nos va a ayudar a acceder a las propiedades publicadas de nuestros
componentes (no confundir con propiedades publicas), que van a poder ser modificadas por nosotros en
tiempo de disefio.

Este es el esquema habitual de cualquier proyecto que se inicia:

program Proj ect 1;

uses
For s,
Unitl in "Unitl. pas' {Fornil};

{$R *.res}

begi n
Application.Initialize
Appl i cation. Creat eFor m( TFor mL, Fornil);
Appl i cation. Run;

end.

La ventana principal de la aplicacion, permanecera mientras el programa este ejecutandose, y a poco
gue lo penséis bien, es en la dltima de las rutinas en donde se desarrolla todo el flujo de la aplicacion, en
tanto no sea cerrada la ventana principal o se invoque el método Terminate del objeto Application. Es decir,
en la ejecucion del método Run de Application.

Lo méas basico de Delphi 2



Salvador Jover - salvador@sjover.com

Por otro lado, y desde el punto de vista de la ficha o form, el esquema por defecto del mddulo que lo
contiene seré:

unit Unit1l;
interface

uses
W ndows, Messages, SysUtils, Variants, Casses, G aphics, Controls, Forms,
Di al ogs;

type
TFornl = cl ass(TForm
private
{ Private declarations }
public
{ Public declarations }
end;

var
Forml: TFor ni,;

i mpl emrent ati on
{$R *. df m}

end.

De aqui lo que mas nos interesa, a efectos de este articulo, es la linea de declaracion de la variable
Form1, en donde se declara, en la parte publica de nuestro modulo, una referencia a una instancia de la clase
TForm1. Cuando el entorno crea el modulo *.pas', da a la variable el mismo nombre que el tipo declarado
en el mismo, pero sin la T inicial. Sois libres de modificar todo esto, pero no os lo recomiendo. Mas que
nada por seguir un poco las convenciones.

Puede convertirse esta referencia, en una forma sencilla de acceder a nuestra ventana, pero ni es
obligatoria en las nuevas ventanas adicionales, ni ciertamente la Unica forma de acceso a las mismas. No se
si me explico. El entorno nos facilita una variable global al médulo como parte de una mecénica de trabajo,
que intenta buscar la mayor sencillez para acceder a la invocacion de métodos o asignacion de propiedades
desde otros modulos. Una vez incluido el nombre de nuestro médulo en el uses de otro diferente, el interfaz
publico del primero queda visible para el segundo y por ende, la variable pablica declarada.

Se puede programar ignorando la variable global. La ventana principal es la Gnica que se puede salvar
del experimento. Sin ir mas lejos podriamos considerar una aplicacion del tipo MDI en donde una de las
propiedades del objeto Application, nos mantiene una referencia a la ventana hija activa
(Application.MainForm.ActiveMdiChil). Se podrian haber creado el resto de ventanas con variables locales
a procedimientos y funciones, y seguriamos teniendo acceso a nuestras ventanas hijas. No pasa nada.

Asi que convenimos que dicha declaracion es obligatoria, para al menos la ventana que ha de
convertirse en principal, lo que nos deja en uno de los primeros dilemas que se nos presentan y que nos
habla sobre la necesidad de definir qué fichas han de ser cargadas en memoria al inicio de nuestro programa
y sobre aquellas otras que deben ser creadas, cargadas en memoria, en tiempo de ejecucion. El sentido
comun y la experiencia suele ser una buena guia para resolver estos conflictos. La guia del desarrollador nos
dice: “No siempre es deseable tener cargadas en memoria a la vez todas la fichas de una aplicacion. Para
reducir la cantidad de memoria necesaria en el momento de cargar la aplicacion, es recomendable no
crear algunas fichas hasta que se necesite usarlas...” , lo cual parece indicado a propdsito de los cuadros de
dialogo, como conviene lineas después, que son tan solo necesarios al momento de la accién de nuestro
usuario. Sin embargo, el uso de las ventanas modales, como veremos en el proximo articulo se puede
extender a otros uso distintos del cuadro de dialogo especifico.

Lo més bésico de Delphi 3



Salvador Jover - salvador@sjover.com

No nos rasguemos las vestiduras si decimos que no hace falta siquiera para crear la ventana. Variable
global o local o incluso no existir. Veamos el ejemplo que nos pone la misma Borland con respecto a un
hipotético archivo de proyecto al modo “squash”.

begi n

Application.lnitialize;

with TFornb. Create(nil) do

try
ProgressBar 1. Max : = 100;
Show, /1 show a splash screen contain ProgressBar control
Update; // force display of Fornb
Appl i cation. Creat eForm( TFor mL, Fornil);
Pr ogressBar 1. St epBy(25) ;
Appl i cation. Creat eFor m( TFor n2, Forn2);
Pr ogressBar 1. St epBy(25) ;
Appl i cation. Creat eFor m( TFor n8, FornB);
Pr ogressBar 1. St epBy(25) ;
Appl i cation. Creat eFor m( TFor m4, Forn¥);

Pr ogressBar 1. St epBy(25) ;
finally
Free;
end;
Appl i cation. Run;
end.

Si decidiéramos, pese a la advertencia y desoyendo cualquier indicacion, que se hace necesario tener
todas las ventanas de nuestra aplicacién cargadas en memoria, Delphi se ocuparia de generar las lineas de
c6digo necesarias a tal efecto, incluyendo las rutinas de creacién de las ventanas, en el archivo de proyecto,
y justo antes de la invocacion del método Run de Application. Supongamos que sean dos, las fichas que
deben ser creadas:

begi n
Application.lnitialize;
Application. CreateForn(TForml, Forml); //es creada la prinera ficha
Application. Creat eForn( TFornm2, FornR); //es creada |a segunda
Appl i cation. Run;

A partir de ese momento, Form1 referencia a una instancia de la clase TForml, y la variable Form2
hace lo propio respecto a TForm2, siendo el programador, libre de usarlas para acceder al interfaz
(propiedades y métodos) que hacen publico cada uno de estos objetos.

Si 0s apetece pensar un poco mas sobre esto, vamos a hacer lo siguiente. Sobre nuestro proyecto
inicial, hagamos algo con poco sentido, como afadir una nueva ficha para asi tener dos (en la barra de
botones corresponde con un botén cuyo hint es “New Form™) y eliminaremos de ambas, tanto de Unitl
como de Unit2, la clausula de declaracion de las variables Forml1 y Form2. Basta con comentarlas afiadiendo
las dobles barras (/). Tiene que quedar alto tal que asi, tanto en Unitl como en Unit2:

/1 var
/[l  Forml: TFormil;

Hecho esto, trasladémoslas al archivo de proyecto, incluyendo ademas dos lineas para que las
variables puedan acceder a los métodos Show y ShowModal respectivamente. En otras palabras:

program Proj ect 1;
uses
For s,

Unitl in '"Unitl. pas' {Fornil},
Unit2 in '"Unit2. pas' {Fornk};

Lo més bésico de Delphi 4



{$R *.res}

var
Forml: TForni;
Form2: TForn2;

begi n
Application.Initialize;
Appl i cati on. Creat eFor m( TFor ni,
Appl i cati on. Creat eFor n( TFor n2,
For mlL. Show,
For n2. Showwbdal ;
Appl i cation. Run;

end.

Salvador Jover - salvador@sjover.com

Forntl) ;
For nR) ;

Ademas, y para acabar de redondear el cédigo, un tanto sin sentido, que acabamos de escribir, vamos
a afladir dos botones a nuestro Form2 en la ficha de disefio. Pulsais sobre la ficha Form2 para que se
convierta en la ficha activa de la ventana de disefio, y tras hacer clic en la paleta de componentes sobre
TButton en la pestafia Standard, volvéis a hacer clic sobre la ficha, quedando inserta en la misma el
componente. Una vez hecho esto, damos codigo a cada uno de los botones haciendo doble clic sobre ellos.

El cédigo resultante, tras afiadir los dos botones y las dos lineas mencionadas es:

unit Unit2;
interface
uses

W ndows, Messages,
Di al ogs, StdCirls;

SysUtils,

type
TForn2 = cl ass(TForm
Buttonl: TButton;
Button2: TButton;

Vari ant s,

Cl asses, G aphics, Controls, Forns,

procedure Buttonld ick(Sender: TObject);
procedure Button2dick(Sender: TObject);
private
{ Private declarations }
public
{ Public declarations }
end;
/I var

/'l  FornmR: TForng;

i mpl emrent ati on

{$R *. df n}

procedure TFornR. Buttonld i ck(Sender:

begin
Appl i cati on. Mai nForm C ose;
end;

procedure TFornR. Button2d i ck(Sender:

begi n
Screen. Fornms[ 0] . d ose;
end;

end.

TObj ect) ;

TOhj ect) ;

Podemos recapitular, antes de ejecutar el programa en el Ide con la pulsacion del boton cuyo icono
asemeja al simbolo Play en color verde, tan conocido de nuestros reproductores de mdsica: Tenemos un

Lo més bésico de Delphi



Salvador Jover - salvador@sjover.com

proyecto con dos fichas que son creadas en memoria desde el principio, en las que hemos eliminado la
declaracion de variables, que vamos a hacer desde el mismo proyecto, afiadiendo unas lineas de cddigo en el
mismo, para que lance la segunda ventana en forma modal. ;Cual es el resultado de ejecutar este extrafio
proyecto?. Veamos...

La rutina ShowModal de Form2, producira que se visualice
la segunda de las fichas y que adquiera el foco, y que en tanto no
sea cerrada, no podamos acceder a la primera. Anecdo6ticamente,
y para que se pudiera ver claramente, se ha afiadido la primera
referencia a Show que hace visible a Form1, que de otra forma y
en esas condiciones quedaria oculta. Lo podéis ver en la figura
1. La pulsacion del primer boton, provocaria que la aplicacién
concluyera su ejecucion, dado que siendo Forml la ventana
principal (la primera que se ha creado), y recibiendo el mensaje
de cierre de la misma, ejecutaria las acciones necesarias para que
la aplicacién finalice. La pulsacion del segundo botdn, Ee— - y: s
provocaria que la ventana activa se cierre, retornando el foco a Figura 1: Ejecucion del programa.
Form1.

En el listado 1 tenéis el cddigo correspondiente al método ShowModal invocado por la ventana 2, y
gue ejecuta uno de sus ascendentes: TCustomForm. Retened en vuestra memoria el bucle repeat ... until y
en el que se puede leer una linea de codigo (se ha resaltado de amarillo en el listado)

if Application.FTerm nate then ...

Esta linea tan peculiar relaciona el mantenimiento del bucle con la recepcion del mensaje WM_QUIT,
estableciéndose como una de las condiciones de salida del mismo. Volveremos sobre esto un poco méas
tarde. Tened paciencia.

Pero no sigamos adelante sin volver sobre el hecho anecdético de situar la declaracion de las variables
en el mismo proyecto. Digo ciertamente anecddtico porque no es algo que se tenga como correcto, sino todo
lo contrario, si nos dejamos llevar por un uso légico de Delphi. La idea era Unicamente llamar la atencion,
de que el lector pudiera percibir claramente que la vida y el &mbito de esta variable es algo diferente de la
vida y el &mbito del objeto al que representa. A mi me ha servido para destacar y compartir con vosotros
varios aspectos: el mas importante es que el objeto (en este caso una ventana) una vez creado, existe aun a
pesar de su variable, y que esta es tan solo un puntero, una referencia hacia el (hacia una zona determinada
de memoria). Da igual, ciertamente que la variable tenga un ambito global o lo tenga local a efectos del
objeto creado. Repercutird en que se pueda perder el acceso al mismo desde dicha referencia, si como en el
caso de ser local a un procedimiento o funcién, es eliminada de la pila la variable, pero el objeto en si
seguird existiendo en tanto no sea liberada la memoria reservada para el.

En el caso que nos ocupa en este momento, he elegido en la pulsacion de sendos botones, la ejecucion
de los métodos de dos instancias de las clases TScreen y TApplication respectivamente (es decir el objeto
Screen y el objeto Application), para acceder a las fichas y a la invocacion de métodos propios de las
mismas. Lo cual nos deja la idea de que no existiendo las variables, existen métodos alternativos para
acceder a las ventanas y en general a todos los controles.

Sigamos con el experimento... Nos situamos ahora en la ventana Form2, y desde dentro de la
implementacion de cualquier de los dos eventos del clic del boton, intentemos compilar el programa tras
afiadir la linea:

For ml. Cl ose;

Lo més bésico de Delphi 6



Salvador Jover - salvador@sjover.com

El resultado es que nuestro compilador se quejard, no sin razén, puesto que no conoce desde ese
ambito la variable Form1 ni tenemos forma alguna de acceder a la misma. Ya no nos vale el uses puesto que
el archivo de proyecto no es una unidad (*.pas) y se nos demandaré el compilado (*.dcu).

Creo que ya podemos volver a dejar todo tal y como estaba, y proseguir de un forma algo mas
normal... tenemos que dar marcha atras y desandar parte del camino andado. Ya podéis eliminar la
declaracion de las variables incluidas en el proyecto, y volver a situarlas en cada modulo respectivo, tal y

function TCust onfFor m Showibdal : | nt eger;
var
W ndowLi st: Poi nter;
SaveFocusCount: | nteger;
SaveCur sor: TCursor;
SaveCount: | nteger;
Acti veW ndow. HWhd;
begin
Cancel Dr ag;
if Visible or not Enabled or (fsMbdal in FFornftate) or
(Fornttyle = fsMDI Child) then
rai se ElnvalidOperation. Creat e( SCannot Showivbdal ) ;
if GetCapture <> 0 then SendMessage( Get Capture, WV CANCELMODE, 0, 0);
Rel easeCapt ur g;
I ncl ude( FFornState, fshodal);
Acti veW ndow : = Get Acti veW ndow;
SaveFocusCount : = FocusCount;
Screen. FSaveFocusedLi st. I nsert (0, Screen. FFocusedForm;
Scr een. FFocusedForm : = Sel f;

SaveCursor := Screen. Cursor;
Screen. Cursor := crDefault;
SaveCount : = Screen. FCursor Count ;
W ndowLi st : = Di sabl eTaskW ndows(0) ;
try

Show;

try

SendMessage( Handl e, CM _ACTI VATE, 0, 0);
Mbdal Result : = 0;

r epeat
Appl i cati on. Handl eMessage;
if Application.FTerm nate then Mdal Result := nrCancel el se

if Mbdal Result <> 0 then d oseModal ;
until Mdal Result <> 0;
Result := Modal Resul t;
SendMessage( Handl e, CM DEACTI VATE, 0, 0);
if GetActiveWndow <> Handl e then ActiveW ndow : = 0;
finally
Hi de;
end;
nal |y
i f Screen. FCursor Count = SaveCount then
Screen. Cursor := SaveCursor
el se Screen. Cursor := crDefault;
Enabl eTaskW ndows( W ndowLi st ) ;
i f Screen. FSaveFocusedLi st. Count > 0 then
begin
Scr een. FFocusedForm : = Screen. FSaveFocusedLi st. First;
Scr een. FSaveFocusedLi st. Renove( Scr een. FFocusedFor m ;
end el se Screen. FFocusedForm := nil;
if ActiveWndow <> 0 then Set Acti veW ndow Acti veW ndow) ;
FocusCount := SaveFocusCount;
Excl ude( FFornState, fshdal);
end;
end;

f

Li stado 1. Inplenentaci 6n del nmétodo Showivbdal en | a clase TCustonfForm

Lo més bésico de Delphi 7



Salvador Jover - salvador@sjover.com

como estaba al principio. Posiblemente, para alguno de vosotros, se produzca el efecto secundario siguiente:
darse cuanta de que existe un archivo de proyecto y de que puede manipularse. Para mi, en los primeros
pasos con el entorno, concretamente con Delphi 2.0 y acompafiado de una pequefia enciclopedia de
programacion, fue una sorpresa... pensaba que tan solo existian los médulos (.pas) o por lo menos que el
(.dpr) era un ser extrafio modificable solo por nuestro compilador... Suele ser habitual encontrar ejemplos de
pantallas de presentacidn, al inicio de la ejecucion de nuestra aplicacion, que hacen uso del archivo de
proyecto.

¢Habéis echo ya la modificacién que hemos comentado?... Ahora mismo ya tienen que estar colocadas
la declaracion de las variables en la posicion original. Eliminamos también del archivo de proyecto las
lineas que acceden a los métodos Show y ShowModal, quedando en la misma situacion en que estaba al
principio del experimento. Vuelve a quedar...

program Proj ect 1;

uses
For s,
Unitl in 'Unitl. pas' {Forml},
Unit2 in '"Unit2. pas' {FornR};

{$R *.res}

begi n
Application.Initialize
Appl i cation. Creat eForm( TFor mL, Fornil);
Appl i cati on. Creat eFor m( TFor n2, Forn2);
Appl i cation. Run;

end.

Serdn creadas y cargadas en memoria antes de que se inicie la ejecuciéon. En el orden descrito.
Modificad ademas desde el inspector de objeto el valor de la propiedad Visible de Form2, asignandola a
True. Ejecutad la aplicacion nuevamente (F9). El resultado es que aparecen las dos ventanas. El foco en la
ventana principal y Form2 se hace visible pero queda en un segundo plano. Ambas han sido creadas desde el
método Show aunque haya sido de echo esto de forma implicita, por lo que podemos activar una u otra,
dependiendo sobre que control o zona sefialemos el clic de nuestro raton.

Desde el momento en que hemos incorporado de nuevo la declaracion de las variables en sus
respectivos maddulos, nos basta incluir una referencia en el uses del modulo para que la variable sea
accesible desde el que ha sido afiadida. Supongamos de nuevo el mddulo Unitl, donde tenemos declarado la
clase TForm1:

unit Unitl;
interface

uses
W ndows, Messages, SysUtils, Variants, Casses, G aphics, Controls, Forns,
Di al ogs, StdCrls;

type
TFornml = cl ass(TForn
Buttonl: TButton;
procedure Buttonld ick(Sender: TObject);

private
{ Private declarations }
public
{ Public declarations }
end;
var

Formil: TFor ni;

Lo més bésico de Delphi 8



Salvador Jover - salvador@sjover.com

i mpl ement ati on
uses Unit2; [/ <----- Li nea afiadi da
{$R *.df n}

procedure TFornl. Buttonld i ck(Sender: TObject);
begin

FornR. Caption: = ' Hol a. Estoy jugando con m s ventanas';
end;

end.

Si analizamos la situacion, tras la ejecucion del programa, ahora ya nos es posible acceder a la
variable Form2 y modificar el titulo de nuestro form mediante su propiedad Caption, dado que la variable
hace referencia a una zona valida de memoria, el objeto existe y ha sido creado con anterioridad. Aunque no
sea este caso concreto, (puesto que Form2 existird durante la ejecucion del programa), si que nos adelanta
uno de los problemas a los que se enfrenta el programador que se inicia en este tipo de entornos y que esta
muy relacionado con el uso de métodos desde referencias de memorias no validas.

Vamos a forzar que sea asi. Generemos una violacion de la memoria. ¢Os parece...? Para ello y desde
el entorno, vamos a eliminar de Autocreate la ficha 2. Elegimos Project/Options y dentro de ésta, en la
pestafia Forms, desplazamos la ficha Form2 hacia la zona Available Forms. Automéaticamente, Delphi
modificd nuestro proyecto eliminando la linea:

Appl i cati on. Creat eFor m( TFor n2, Forn?);

De nuevo ejecutamos la aplicacion, pero esta vez, la pulsacion del botén 1 provocard una excepcién
desde el momento en que intentamos ejecutar la asignacién de la propiedad Caption sobre una referencia
invalida. La ficha a la que referencia Form2 todavia no ha sido creada y la variable apunta a Nil. Si queréis
verlo con vuestros propios ojos tan solo tenéis que poner un punto de parada en la linea de asighacién y
observar desplazando el ratén sobre la variable tras la pulsacion del boton y la obtencién de la parada. Se
resaltard el valor Nil.

Para poder acceder correctamente a la variable en la nueva situacion nos bastaria con crear
previamente la segunda ficha. Lo vamos a hacer de las dos siguientes formas:

Primero afiadiremos a la pulsacion del botén en la ficha Form1 el siguiente codigo:

procedure TFornil. Buttonld i ck(Sender: TObject);
var
Form2: TForn2;
begi n
FornR: = TForn2. Create(Sel f);
Forn2. Vi si bl e: = True;
end;

A su vez, Form2 también va a ser modificado en la implementacion de uno de los botones:

procedure TFornR. Button2d ick(Sender: TObject);
begin

For nR. d ose;
end;

Ejecutad la aplicacion de dos formas: una tal y como esta, y la otra comentando el cddigo de
declaracion de la variable local

procedure TFornil. Buttonld ick(Sender: TObject);
/I var
/'l FornmR: TForng;

Lo més bésico de Delphi 9



Salvador Jover - salvador@sjover.com

¢Conclusiones?

Cuando no se comenta la declaracién de variable local, la asignacion de la referencia Form2,
FornR: = TFornR2. Create(Sel f);

Form2 hace referencia a la variable declarada localmente, y como tal, cuando salimos del &mbito del
procedimiento o funcidn, es eliminada de la pila, liberdndose la memoria que ocupa la misma variable. Si
apunta a un objeto creado este sigue existiendo y corremaos el peligro de no poder acceder al mismo si fuera
el caso. En ese caso concreto, la asignacion posterior, tras la pulsacion del boton, en la que intentamos
hacer visible la ventana 2, con la misma logica, la variable Form2 sigue apuntando a Nil, dado que nunca fue
asignada.

En el caso de que deseemos comentar las lineas de la declaracién local de la variable, observaremos
que Form2 ya no genera excepcion alguna, porque precisamente la creacion de la ventana asigné la
referencia a la zona de memoria vélida donde se aloja la instancia de la clase: Hablamos de la variable
publica declarada en Unit2 y a la que establecimos un vinculo al afiadir en el clausula uses de Unitl la
referencia a dicho modulo.

Os puede parecer una tonteria, pero os aseguro que involuntariamente se pueden caer en este tipo de
errores de la forma mas tonta y cuando menos lo esperamos: cuando invocamos un método sin comprobar
anteriormente que la referencia no apunta a Nil (se suele hacer mediante la funcién Assigned()). Tenedlo en
cuenta siempre. Es una regla de Oro a seguir: No dar por seguro el valor de una referencia, en un contexto
en el que pueda quedar invalidada.

Por otro lado estd la otra leccion: El ambito. El ejemplo nos ha valido para comprender que la
creacion de Form2 no depende de que la variable sea local o global, dado que lo que realmente importa es la
ejecucion del método constructor de la instancia de clase, momento en el que se reserva memoria para la
misma. Y enfocando el tema desde el lado contrario: su destruccion tampoco depende de la existencia 0 no
de la variable que lo cred. ;(Veis que este matiz ya no quedaba tan claro? Dependerd de que en algun
momento se invoque al método que sea, llamémaosle x, que inicie la liberacién de toda la memoria reservada.

ShowModal o Show... ¢con cual me quedo?. (Proximamente).

La mayoria de los programadores que como yo, son extremadamente perezosos, encuentran que la
creacion de un formulario Modal es algo cuasi perfecto... ideal en aquellas ocasiones en las que debemos
situar a nuestro usuario en situacion de elegir, y sin derecho a seguir avanzado en tanto no se haya hecho
dicha eleccion. Ese sera el tema que va a ocupar buena parte del segundo articulo, donde intentaré abordar
lo més claramente posible, el por qué a pesar de todo, algin programador que se inicia en Delphi se atasca
en ese punto. Continuaremos también la explicacion que inicidbamos en el listado 1, intentando comprender
que es lo que sucede exactamente cuando invocamos el método ShowModal.

Nos vemos. Hasta entonces, recibid un saludo,

Salvador Jover

Lo méas basico de Delphi 10



