Un enfoque modular para nuestra aplicacion.

Autor: Salvador Jover

Introduccion: Descubriendo nuevos planteamientos

No se si estaréis de acuerdo pero los comienzos de muchos programadores en un
entorno como el nuestro, pasan por etapas que suelen ser comunes a una mayoria,
sobretodo si la persona que toma contacto con el entorno es un programador novel y con
poca o ninguna experiencia. Y me podria poner como ejemplo a mi mismo, recordando
cual era mi vision de la generacion de codigo hace unos afos, cuando iniciaba mis pasos
en Delphi, en contraposiciéon a la actual, con algo mas de experiencia, donde la
observacion de las técnicas empleadas por otros programadores son capaces de sugerirte
nuevas posibilidades en el planteamiento de nuestros desarrollos. Y el motivo, en mi
opinion, no es otro que la metodologia usada en el aprendizaje de nuestra herramienta,
que dista bastante de ser la mas correcta a largo plazo.

El problema quizas viene en querer obtener resultados inmediatos. Diriamos
usando un dicho popular, eso de empezar nuestra casa por el tejado. Nuestro
programador, al que llamaremos Listillo (por ponerle un nombre), en una primera toma
de contacto descubre el lienzo o formulario y sin darse cuenta, va a entrar en la etapa
que podriamos Illamar de “Relacion de Objetos”, en la que se le educa en una filosofia
un tanto “dafiina”, en la que prima unicamente responder a los eventos producidos por
el sistema y establecer relaciones entre los distintos componentes del interfaz. A Listillo
le basta entender que puede relacionar dos componentes de una forma sencilla, para que
instantdneamente, comience el disefio de su aplicacion a través del interfaz que
requerird el usuario. Es una relacion causa-efecto que el mismo entorno favorecera de
forma involuntaria. Un boton aqui, otro alld. Una casilla de edicion aqui y respondiendo
al evento OnKeyDown, una implementacion que modifique una etiqueta situada unos
centimetros mas arriba. En el cuento de los tres cerditos este seria el primero de los
hermanos, construyendo su casita con paja. Sobre este punto, recuerdo perfectamente
los comentarios que me hacia un profesor de la Universidad y buen amigo (Francisco
Mora) acerca de estas primeras etapas de aprendizaje, durante un curso especifico de
Delphi. Me explicaba Francisco, como estas primeras etapas se cubren con gran rapidez
y como, al ascender a esa loma imaginaria donde creemos encontrar la cima, solo
descubrimos que existe una verdadera montaia tras ella.

Nuestro programador puede entonces iniciar una segunda etapa en la que se
descubre la creacion de componentes y conceptos como herencia, polimorfismo, y otros
muchos mas, propios de la Orientacion a Objetos. Bien. Podemos llamar a esa segunda
etapa con ese nombre, que parece adaptarse bien a sus caracteristicas: “Orientacion a
Objetos™.

Relacionar objetos no suele ser suficiente sobretodo si tenemos en cuenta que
muchos de los componentes no se adaptan siempre a los requisitos deseados.
Normalmente adoleceran de alguna funcidon necesaria para nuestro desarrollo.
(Solucion...? Seguramente, la opcion mas facil para Listillo es hacer una busqueda en
foros y paginas especializadas en Internet. Son las tipicas preguntas que vemos dia a
dia: “;alguien conoce un componente que sea como un panel pero que ademas luzca un
hermoso gradiente y la etiqueta se pueda situar en direccion horizontal. Es urgente por
favor.” La respuesta suele desembocar en paginas con vocacion de almacén donde uno
se sonrie pensando en no volver a trabajar mas en una sola linea de codigo. —Si aqui
tengo de todo, para que pasar trabajo... Solo tengo que echar mano de...

Y esta vision un tanto infantil suele durar hasta que se descubre que a pesar de
existir estos grandes hipermercados de componentes, no siempre se acaba encontrando
lo que uno busca. Y si existe, posiblemente vale un dinero que no se tiene. Por lo que a
menudo, el programador acaba viéndose en la necesidad de tener conocimientos acerca
de la Orientacion a Objetos y en poco tiempo entrara de lleno en el mundo de la de la
construccion de componentes. La idea que mueve esta segunda etapa puede ser: “si no
tienes lo que buscas quizas lo puedas construir tu mismo...”. Podriamos relacionar esta

etapa con el segundo cerdito del cuento, el que construia su casa con madera.

Y el lobo sopld, y resoplo...

De no haber existido un lobo feroz, los dos cerditos bien hubieran podido vivir
muchos afios, mas felices que el tio de la tiza (es una expresion de mi pueblo), pero he
aqui que existe ese lobo en forma de nuevos requerimientos para nuestras aplicaciones:
las cuales vemos crecer dia a dia, y acaban demandando nuevas modificaciones a un
coste razonable. Aquello que antes nos parecia seguro y estable ahora ya empieza a ser
incomodo y la cantidad de horas que dedicamos a reinventar la rueda no llegan a
compensar el flujo monetario de retorno a ese esfuerzo (valorando horas/moneda). Las
referencias entre los distintos mddulos, donde todo el mundo es amigo y conoce a todo
el mundo, posiblemente sea una de las razones mas visibles del problema.

Asi que podemos finalmente, tras una larga peregrinacion, conocer una tercera
etapa en donde intentamos encontrar documentacion sobre buenas técnicas de
construccion de software. Y sobre este punto ya es un tanto mas dificil encontrar
documentacién aplicada a Delphi. Tendriamos que revisar las publicaciones sobre
modelos y patrones de diseflo mas clasicos y no se aplican a nuestro entorno. Podemos
leer “Patrones de disefio” de Erich Gamma, que ha llegado a ser una verdadera
referencia para muchos programadores. También probé, mientras preparaba los articulos
de ModelMaker, la lectura de “UML y Patrones” de Craig Larman, (también de la

editorial Prentice Hall) pero una siempre acaba por preguntarse como aplicar lo que lee

a sus desarrollos sin perder un tiempo que no se tiene.

Reconozcamos que no es demasiado habitual este enfoque en las publicaciones
que podemos encontrar sobre Delphi, las cuales basan el esfuerzo mayor en “mostrar” y
no tanto en “rentabilizar”. Decia lan Marteens al principio del capitulo 23 de “La cara

oculta de Delphi 6: (Herencia visual y prototipos):

“La clave para desarrollar aplicaciones, y no perder dinero en el proceso, es
terminarlas lo antes posible. Y cuando se programa en Delphi, una de las principales
ayudas la ofrece un recurso conocido como herencia visual, que permite definir
prototipos de formularios con el diseiio visual y el codigo fuente comun de varias
ventanas”.

Y prosigue durante 10 paginas mas, un pequefio proyecto en el que hace uso de
esta técnica. Yo os aconsejaria su lectura, sobretodo para aquellos que andan buscando
sistemas modulares basados en la herencia visual.

Pero este articulo, el que ahora nos ocupa, nace en el contexto de la publicacion de
las tres entradas de mi blog de fechas 4, 5 y 8 de Mayo, donde me quejaba de este
ultimo tema (al hablar de la necesidad de crear un buen Framework) y de otros mas

relacionados. Asi que es un buen momento para empezar a verlo sin mas demora.

El framework de Developer Express.
Posiblemente, existan muchas formas de hacer lo mismo que la planteada en las
paginas web de esta empresa, conocida por unos componentes de gran calidad y no

menos complejidad.

TDataModule

TfrmMain

P
«

TdmConexion

arecords / \"‘“R T
TActionRegisterRecord _/ \ T TdmAppActions
/ g) T
/ \ ~_
L . o
‘ TdmEmpleados ‘ TdmEditEnpleados ‘ TdmBiolife ‘ TdmAnimales
A Daios .T\ 1Datos /I fDatos I\ i0atos
@ ¢- :
‘ TwndLogo ‘ ‘ TwndEmpleados ‘ ‘ TwndFichaEmpleados ‘ ‘ TwndBiolife ‘ ‘ TwndAnimales ‘
Madlule
TirmCustomModule % TWodulelnfo
fems " -
" Activehodulginfer
= (;"’
1
v 7 -
TFrame TModulelnfoManager = TCategoryinfo

En una de las secciones de su Web, intentaban educar a sus desarrolladores dentro
de lo que entienden como buenas practicas de desarrollo y se mostraba un buen ejemplo
de desarrollo modular. Actualmente ya no existe dicho enlace, al menos yo no he
podido encontrarlo y quizas por esa razén, y movido por la publicacion de todos los

comentarios escritos en las entradas del blog, pensé que valia la pena recoger esa idea y
retomarla, respetando el espiritu de quien la habia creado. Podéis ver un poco mas
arriba una imagen que muestra la relacion de las clases en un diagrama, tal y como se
plantea en el ejemplo que vamos a comentar.
En la siguiente imagen podéis apreciar como se relacionan los modulos principales
(se han dejado los minimos con el fin de que se aprecie mejor). Una vez, visto, ya

podremos empezar a contar qué se persigue y como se llega al resultado.

amodule s amodules
uLogo Modules
classes . classes
Tw ndLogo T —— | TCategorynfo
Thiodulelnfo
~ | ThodulelnfolManager
P g =T operations
-~ e P 7| + Modulenfolanager
7 T P
amodules rie o o - -~ ;ﬁl .'?I'\
CustomModule — - / 1
classes < «modUlEs / 1
) - uBiolife ! |
TActionMotification e o — — Tasses / |
TirmCustomidodule o smodules 1
TActionRegisterRecord [- Tw ndBiclife s main l
e -~ | e classes |
T~ | N Trrrmiviain l
I | R |
e | \\ 5 I'
) |""‘- S S 5, |
o~ “ .
| ~d ~ \ |
e ~ “ AY l
amodules el . 'l '(;d I
udmBiolife R «rrodules
Casses "] dmActions
L classes
TdEiolfe TdmAppActions
i operations
| + AppActions
¥ :
amodules
Conexion
classes
TdmConexion

El objetivo que se persigue es trabajar con nuestro desarrollo permitiendo que
podamos extender de forma sencilla nuevos modulos que amplien su funcionalidad.

Basicamente es eso. Aqui la inversion de tiempo la haremos en la primera fase de
disefio del proyecto y se rentabilizara a medida que va siendo extendida.

Supongamos que queremos que afiadir a nuestro desarrollo un modulo de
personal, representado en una rejilla y una ficha de edicion para el registro de datos. La
idea es que sea el propio modulo que va a ser afiadido, el que registre qué acciones debe
habilitar el interfaz principal cada vez que se active y asimismo, personalice los
distintos menus, barras de botones y paneles de opciones. Justo al contrario de como
razonaba nuestro programador, Listillo, en las primeras etapas vividas. Si pudiéramos
ojear su codigo en aquellos momentos, probablemente observariamos que la creacion de
los distintos formularios seria responsabilidad de la ventana principal o conocida por
ella y esto, aunque no es malo en si mismo, si impide la modularidad puesto que
trabajamos con la idea concreta de la clase de modulo y no con su abstraccion.

Finalmente y volviendo al ejemplo actual, podemos comentar que esta
informacion debe ser recogida y gestionada por alguien (ya veremos quien) que
finalmente informarad a nuestro interfaz principal de las acciones a tomar. Si os fijais,
este esquema de trabajo, evita que la ventana principal “conozca” cada uno de los
modulos afadidos, eliminando referencias que nos condicionarian en un desarrollo
modular.

Una imagen de nuestro framework:

SICFrameWork 2007 - (2007.5.2.19) - Animals

Archivo Home Tablas
| lﬂ Afiadi |+ Modificar |;h|EIiminar “Cuspdar ¥ Cancelar |4 primero 4 Anterior B Posterior Bl Ultime _
= Home Arimales 1 Eicha 1
€7 Help NAME |s1z_ |weIGHT |aREa ~
= Tablag || &ngel Fish 2 2 |Computer Aquariums |
e Boa 10 8 !South America
i Animals — : . :
i _Critters 30 20 [Screen Savers
i Biolife House Cat 10 5 |Mew Crleans
LJ Emplopes _Ocelu:ut _ 40 35 @Africa and Asia
Parrok 5 5 !South America
|_|Tetras z 2 Fish Bowls
v.
PROGRAM - CARIA 15-05-2007 16:53:55

El gestor de acciones

Empecemos a razonar las distintas entidades que participaran y como primer
objetivo, tenemos aquella que se ha de preocupar de gestionar y recoger qué acciones
habilitaran cada uno de los modulos. En términos de clases necesitamos una que asuma

las demandas propias del objetivo encomendado, como pueden ser informar del nimero

de acciones almacenadas y permitir una referencia segura a las mismas, de forma que
puedan ser ejecutadas.

Estudiemos algunos detalles de su interfaz publico:

TdmAppActions = class (TDataModule)

private
procedure ActionManagerExecute(Action: TBasicAction; var Handled:
Boolean);
public
constructor Create(AOwner: TComponent); override ;
destructor Destroy; override ;
property ActionCount: Integer read GetActionCount;
property Actions[Index: Integer]: TBasicAction read GetAction;

property Key: string read GetKey;

property Pc: string read FPc;

property Usuario: string read FUsuario;

property ManejadorDeAcciones: TActionManager read FManejadorDeAcciones
write SetManejadorDeAcciones;

end;

Lo primero que observamos en el modulo dmActions es que la primera invocacion

de la funcion global AppActions sera responsable de crear la instancia del objeto

contenedor de acciones o bien devolver una referencia al mismo si ya esta creado.

function AppActions: TdmAppActions;

begin
if(dmAppActions= nil) then
dmAppActions := TdmAppActions.Create(Applicatio n;
Result := dmAppActions;
end;

Respecto al ejemplo de Developer Express, se puede apreciar que he movido el
componente TActionManager, que originalmente se sitia dentro del datamodule hacia
la ventana principal, por motivos del cambio de componentes en la interfaz principal.
Esto origina que necesite una propiedad adicional para realizar la asignacion de la
referencia FManejadorDeAcciones e intente garantizar que dicho puntero siempre
contenga una referencia valida al acceder a la matriz de acciones. Una opcidén podria
haber sido redefinir el constructor pero partimos de que el modulo de datos se crea antes
que la ventana principal por lo que dificilmente podriamos conocer en ese momento el
parametro de la clase TActionManager.

En el procedimiento de escritura de propiedad, es decir, cuando se produce la
asignacion valida de la referencia, asignamos el evento OnExecute del componente
ActionManager que nos permitira enlazar con el modulo responsable de resolver el

estado de cada accion y ejecutarla.

procedure TdmAppActions.SetManejadorDeAcciones(const Value: TActionManager);
begin

FManejadorDeAcciones := Value;

if FManejadorDeAcciones <> nil then begin
FManejadorDeAcciones.OnExecute:= ActionManager Execute;
FakeVCLActions;
end
else FManejadorDeAcciones.OnExecute:= Nil
end;
procedure TdmAppActions.ActionManagerExecute(Action: TBasicA ction; var
Handled: Boolean);
begin
/I Llamada al metodo de ejecucion de modulo activo (el visualizado)
if (ModulelnfoManager.ActiveModulelnfo <> nil) then
Handled:= ModulelnfoManager.ActiveModulelnfo.Mo dule.ExecuteAction(Action);
end;

Precisamente, cuando resolvemos:
ModulelnfoManager.ActiveModulelnfo.Module. ExecuteAction(Action);
lo que estamos pidiendo al Manejador del Modulos (ModulelnfoManager), la clase
experta en la gestion de los distintos modulos, es que se ejecute la accion correcta en el
Modulo activo, el que visualiza en ese momento la interfaz del usuario.

Falta comentar, antes de poner nuestros ojos en las siguientes clases, que para no
complicar excesivamente este articulo, he omitido conscientemente una serie de
métodos que deberia implementar la clase TdmAppActions. Estos métodos nos deberian
permitir recargar dindmicamente el contenedor de acciones en el momento en el que un
nuevo moédulo se une. De esa forma, estariamos mas cerca de alcanzar ese objetivo de
trabajar modularmente en tiempo de ejecucion, mediante la carga de librerias que
encapsulen cada nuevo modulo anadido. Ahora mismo, tal y como estd planteada la

aplicacion, nos estamos conformando con trabajar modularmente en tiempo de disefio.

(Quién es quien...? ;Vaya lio...! ©

Lo mejor es que abrdis en un editor de texto el modulo Modules.pas y nos
centremos en las tres clases que aparecen:

TCategorylnfo

TModulelnfo

TModulelnfoManager

(Qué hace cada una de ellas? Intentemos explicarlo:

Para aislar nuestra ventana principal de las clases concretas de cada modulo
afiadido, se propicia que el gestor de médulos (TModulelnfoMaganer) siempre trabaje
con una abstraccion de una clase concreta, comun a todos los modulos afiadidos. Para
nosotros, esa abstraccion serd TfrmCustomModule, el ascendiente obligado en la
creacion de nuevas clases que pueda gestionar TModulelnfoManager.

Asi pues, nuestra instancia global de la clase TModulelnfoManager, es el

verdadero corazon del framework y sera responsable de:

-Ordenar la visualizacion de un modulo a demanda del usuario.

-Mantener y dar acceso a una lista de categorias que puedan agrupar los distintos
modulos. Por ejemplo, podemos tener una categoria genérica COMPRAS que aglutina
distintos modulos vinculados directamente con ella, como por ejemplo el alta de
proveedores o la generacidon de un albaran de entrada de existencias. Este punto muestra
la relacion o vinculo existente entre las clases TCategorylnfo y TModulelnfoManager.
La clase TCategorylnfo es una clase auxiliar que se responsabilizara de guardar la
informacion de cada una de las categorias. La clase TModulelnfoManager se apoyara en
esa informacion en determinados momentos (por ejemplo al agrupar modulos por
categorias)

-Mantener y responsabilizarse del registro de cada modulo. Esta parte es clave ya
que se va a establecer una relacion real entre el nombre genérico del moédulo con su
clase, lo que permitira que el interfaz sea capaz de invocar cada modulo simplemente
obteniendo el nombre del mismo y sin conocer la clase concreta que va finalmente a
llamar.

-Mantener y dar acceso a una lista de modulos con la informacion asociada a cada
uno de ellos. Esta es la vinculacion que existe entre la clase TModulelnfoManager y la
clase TModulelnfo, que sera responsable de guardar la informacién que recibe del
registro de cada uno de los modulos.

-Asegurar una referencia valida al modulo activo, que es el que visualiza el
usuario. Cualquier otra clase, se dirigird a ésta para obtener el frame activo a través de la
propiedad ActiveModulelnfo

Podemos ver su interfaz:

TModulelnfo = class (TObject)

private

FCategory: TCategoryinfo;

FHasParametros: Boolean;

Flmagelndex: Integer;

FModule: TfrmCustomModule;

FModuleClass: TfrmCustomModuleClass;

FName: string
procedure DoModuleDestroy(Sender: TObject);
function GetActive: Boolean;

protected
procedure AsignaParametros(AParametros: Array of Variant);
procedure CreaModulo(AParametros: Array of Variant);
procedure DestroyModule;

public

constructor Create(const AName: string ; AModuleClass:
TfrmCustomModuleClass;

ACategory: TCategorylnfo; Almagelndex: Integer = -1);

destructor Destroy; override ;

procedure Abrir(AParent: TWinControl);

procedure AbrirConParametros(AParent: TWinControl; AParametr os: Array of

Variant);

function HasParametros: Boolean;
procedure Hide;

property Active: Boolean read GetActive;
property Category: TCategorylnfo read FCategory;
property Imagelndex: Integer read FImagelndex;
property Module: TfrmCustomModule read FModule;
property Name: string read FName;

end;

Pero lo mas interesante para poder comprender como se relacionan las distintas
clases es reproducir la cadena de llamadas desde el modulo concreto. Todo empieza

cuando el modulo invoca las funciones de registro en su inicializacion.

initialization
ModulelnfoManager.AddCategory('Home', 0);
ModulelnfoManager.RegisterModule(‘Help', TwndLogo ,
ModulelnfoManager.GetCategoryByName(‘Home"), 0);

Es decir, que al inicializarse afiadimos la categoria si es necesario y registramos en
el Gestor de modulos el nombre de la clase, la clase y la categoria asociada a la misma.

El ultimo parametro sera la imagen mostrada por el interfaz (0).

La llamada al procedimiento RegisterModule la tenéis a continuacion:

procedure TModulelnfoManager.RegisterModule(const AName: string ; AModuleClass:
TfrmCustomModuleClass; ACategory: TCategory Inffo= nil ; Almagelndex:
Integer = -1);
var
AModulelnfo: TModulelnfo;
begin
/IAqui se podria revisar la seguridad antes de regi strar el modulo
AModulelnfo := GetModulelnfoByName(AName);
/IEs lanzada una excepcion si el modulo ya existe ¢ on el mismo nombre
if (AModulelnfo <> nil) then
raise Exception.CreateFmt('El médulo con nombre "%s" ya e xiste', [AName]));
/I Creamos una categoria si no existe todavia
if CategoryCount=0 then

AddCategory('Default’, -1); /Ipor defecto le llamamos "Default”
{ if ACategory = nil then
ACategory := Categories[0]; } //dejamos que AC ategory pueda ser nil
/I Creamos la instancia de informacién y la afiadimo s alalista
AModulelnfo := TModulelnfo.Create(AName, AModuleC lass, ACategory,

Almagelndex);
FModuleList.Add(AModulelnfo);
end;

Lo mas destacado es el objetivo final: crear una instancia de la clase TModulelnfo
y guardarla en una lista, de forma que permita al gestor de moddulos obtener al
informacion que necesita para poder trabajar con la clase genérica y resolver
correctamente en la clase concreta, apoyandose en el polimorfismo y la redefinicién de
métodos de las clases concretas.

Mas que comentar linea a linea de cdodigo, quizas lo mas efectivo es ejecutar desde

Delphi la aplicacioén que se entrega de ejemplo, paso por paso, para ver sobre el terreno

el orden de llamada de las distintas funciones y procedimientos. No obstante, si que
deberia comentar, que al estudiar los nuevos requerimientos que me pedia este ejemplo,
frente al original de Developer Express, me vi en la necesidad de afiadir un
procedimiento AbrirModuloConParametros, que nos permitiera adaptarnos a la
necesidad de tener pardmetros adicionales al activar el modulo, como pudiera ser en el
caso de que el modulo representara una ficha de edicion y recibiera como parametro la
clave primaria del registro, para asi abrir de forma parametrizada el dataset. O como
también sucede, un pardmetro que represente la operacion que deseamos efectuar [ver la
constante TOperacion que se declara en el modulo de acciones]. Un ejemplo de esto precisamente
lo tenéis en la Edicion de Fichas de Empleados (uEditEmpleado.pas). Sobre este punto
y hablando del parametro matricial abierto de tipo Array of Variants, seria interesante
que buscarais en mi blog un par de entradas que hablan acerca de este tema, con el titulo

/Te topaste con un variant?

Por no perder demasiado tiempo, en el ejemplo me he valido de una tabla en lugar
de hacer uso de una consulta, lo cual no resulta demasiado afortunado pero si rapido,©.
Quiero decir con esto, que en condiciones normales, en una aplicacion cliente-servidor
deberiamos de restringir los registros de la rejilla garantizando que retornan una
cantidad apropiada. En muchos casos, podria ser interesante interponer, antes de su
presentacion visual, un sistema de filtro en forma de ventana, permitiendo al usuario
seleccionar el rango de registros a mostrar. En ese punto, podria ayudarnos el evento
OnShowModule que hemos implementado en la clase TfrmCustomModule, y que se
dispara antes de visualizarse el frame.

Hay una linea de codigo que puede pasar desapercibida y que también me gustaria
comentar. Mirad la implementacion del procedimiento Abrir de la clase TModulelnfo y
concretamente la linea en que se produce la asignacion del nombre genérico del modulo

(FName) al ascendente de la clase concreta, representado en la referencia Module.

procedure TModulelnfo.Abrir(AParent: TWinControl);
begin
if Module = nil then CreaModulo([]);
Module.Parent := AParent;
Module.Align := alClient;
Module.ModuloName:= FName; Il € Interesante
Module.Show;
end;

Esta linea la anadi con el fin de que previa a la ejecucion del método Show, que
hara que nuestro modulo se convierta en el modulo activo, podamos a través del nombre
obtener algunas funcionalidades adicionales, desde el mismo modulo descendiente y
tras haber sobrescrito el mensaje de Windows que recibe la ventana al ser activada.
Tomad por ejemplo una misma clase que se registre en distintos médulos y que previa a

su visualizacion, segun quien la invoque haga o muestre cosas distintas.

El cabeza de familia: TfrmCustomModule y sus hijos...

Una vez que hemos presentado, por un lado aquella clase (7TdmAppActions) que
gestiona las acciones disponibles para cada modulo. Y por otro lado, el grupo de clases
que gestionan la presentacion de cada uno de ellos y su acceso desde el interfaz
principal (TmodulelnfoManager, TModulelnfo y Tcategorylnfo), nos queda estudiar la
clase TfrmCustomModule, ascendiente de cada uno de los moddulos que queramos
afiadir.

Veamos su interfaz y el de uno de sus descendientes, y comentemos lo que nos

parezca mas interesante.

TfrmCustomModule = class (TFrame)
dsGeneral: TDataSource;
procedure dsGeneralDataChange(Sender: TObject; Field: TField);
procedure dsGeneralStateChange(Sender: TObject);
private
FAcciones: TAcciones;
FHasParametros: Boolean;
FOnDestroy: TNotifyEvent;
FPc: string
FUsuario: string ;
FSupportedActionList: TList;
FOnShowModule: TNotifyEvent;
FModuloName: String
function GetKey: string ;
function GetNotificationByAction(Action: TBasicAction):
TActionNotification;
procedure SetModuloName(const Value: String);
procedure SetAcciones(const Value: TAcciones);
protected
procedure DoShowModule; virtual ;
/lacciones bésicas de gestion de tablas

procedure DoActionAlta(Action: TBasicAction); virtual;
procedure DoActionAnterior(Action: TBasicAction); virtual
procedure DoActionCancelar(Action: TBasicAction); virtual ;
procedure DoActionEliminar(Action: TBasicAction); virtual ;
procedure DoActionGuardar(Action: TBasicAction); virtual ;
procedure DoActionModificar(Action: TBasicAction); virtual ;
procedure DoActionPosterior(Action: TBasicAction); virtual
procedure DoActionPrimero(Action: TBasicAction); virtual
procedure DoActionUltimo(Action: TBasicAction); virtual
procedure RegisterAction(const Action: TBasicAction; ANotification:
TActionNatification);
procedure RegisterActions; virtual
procedure GoToFicha(const AOperacion: TOperacion); virtual; abstract;

property Key: string read GetKey;
property Pc: string read FPc;
property Usuario: string read FUsuario;
public
procedure WMNCPaint(var Msg: TMessage); message WM_NCPAINT;
constructor Create(AOwner: TComponent); override ;

constructor CreateWithParams(AOwner: TComponent; AParams: Array of
Variant);

virtual
destructor Destroy; override ;
procedure AsignaParametros(AParams: Array of Variant); virtual
function ExecuteAction(Action: TBasicAction): Boolean; override ;

function HasParametros: Boolean;
function IsActionSupported(Action: TBasicAction): Boolean;

function HayCambios: Boolean; virtual
procedure UpdateActionsState; virtual ;
procedure UpdateActionsVisibility; virtual
property OnDestroy: TNotifyEvent read FOnDestroy write FOnDestroy;
property OnShowModule: TNotifyEvent read FOnShowModule write
FOnShowModule;
property ModuloName: String read FModuloName write SetModuloName;
property Acciones: TAcciones read FAcciones write SetAcciones;
end;
TwndAnimales = clas s(TfrmCustomModule)
private

{ Private declarations }
fDatos: TdmAnimales;
procedure DoBeforeShow(Sender: TObject);

protected

procedure DoActionAlta(Action: TBasicAction); override ;
procedure DoActionModificar(Action: TBasicAction); override ;
procedure DoActionEliminar(Action: TBasicAction); override ;
procedure DoActionCancelar(Action: TBasicAction); override ;
procedure RegisterActions; override ;

procedure GoToFicha(const AOperacion: TOperacion); override ;
public

{ Public declarations }

constructor Create(AOwner: TComponent); override ;

destructor Destroy; override ;

procedure UpdateActionsState; override ;

end;

La clase TfrmCustomModule se disena con el fin de que pueda servir como
aglutinante de todos los modulos descendientes de el, y como podemos imaginar,
contiene toda la funcionalidad minima comun a todos los modulos hijos. En el caso que
nos ocupa, la clase TwndAnimales, que deberia mostrar la tabla de animales de la base
de datos dbdemos.gdb, tan solo tiene que registrar todas las acciones que desea activar

en el interfaz.

procedure TwndAnimales.RegisterActions;
begin
inherited RegisterActions;

RegisterAction(AppActions.Actions[KALTA], DoActio nAlta);
RegisterAction(AppActions.Actions[KMODIFICAR], Do ActionModificar);
RegisterAction(AppActions.Actions[KELIMINAR], DoA ctionEliminar);
RegisterAction(AppActions.ActionslKGUARDAR], DoAc tionGuardar);
RegisterAction(AppActions.Actions[KCANCELAR], DoA ctionCancelar);
RegisterAction(AppActions.Actions[KPRIMERO], DoAc tionPrimero);
RegisterAction(AppActions.Actions[KANTERIOR], DoA ctionAnterior);
RegisterAction(AppActions.Actions[KPOSTERIOR], Do ActionPosterior);
RegisterAction(AppActions.Actions[KULTIMO], DoAct ionUltimo);

end;

Algunas de estas acciones registradas, podria darse el caso de que fueran comunes
a todos los modulos, que es el caso actual de los procedimientos de navegacion, alta,
baja y modificacion de los registros, y de los que existe con un comportamiento por
defecto en el TfrmCustomModule. Bastaria sobrescribirlos como hemos hecho en las
acciones DoActionAlta, DoActionEliminar y DoActionCancelar

Veamos el ejemplo del procedimiento Eliminar, que es sobrescrito para dar la
oportunidad al usuario de prevenir un borrado accidental:

procedure TwndAnimales.DoActionEliminar(Action: TBasicAction);
Var
MsgText, MsgCaption : String
NL : String
MsgType, UserResp : integer;
begin
NL := #13 + #10; {New Lin}
MsgCaption :='¢ Deseas eliminar el registro acti vo (umodulo)?';
MsgText := MsgText + 'Pulsa Ok para eliminar el registro activo.' + NL;
MsgText := MsgText + 'Si deseas cancelar pulsa C ANCEL."

MsgType := MB_OKCANCEL + MB_ICONWARNING + MB_DEF BUTTON2 + MB_APPLMODAL;

UserResp := MessageBox(Handle, PChar(MsgText), PChar(MsgCaption),
MsgType);
Case UserResp of
IDOK :
begin
inherited
end;
IDCANCEL :
begin
end;
end;
end;

Nos falta conocer de que forma, el modulo descendiente condiciona la visibilidad

o la disponibilidad de las distintas acciones. Veamos como lo hace:

procedure TwndAnimales.UpdateActionsState;

begin

with AppActions, dsGeneral do begin

TAction(Actions[KALTA]).Enabled := (State in [dsBrowse));
TAction(Actions[KMODIFICAR]).Enabled := (State in [dsBrowse]);
TAction(Actions[KELIMINAR]).Enabled := (State in [dsBrowse]);
TAction(ActionsfKGUARDAR]).Enabled := (State in [dsEdit, dsInsert]) and

DataSet.Modified;

TAction(Actions[KCANCELAR]).Enabled:= (State in [dsEdit, dsInsert));
TAction(Actions[KPRIMERQ]).Enabled := (State in [dsBrowse]);
TAction(Actions[KANTERIOR]).Enabled := (State in [dsBrowse]);
TAction(Actions[KPOSTERIOR]).Enabled := (State in [dsBrowse]);
TAction(Actions[KULTIMO]).Enabled := (State in [dsBrowse]);

end;
end;

Al sobrescribir el metodo UpdateActionsState, que es virtual en la clase
TfrmCustomModule, conseguimos condicionar las acciones de acuerdo al estado
booleano deseado, tan solo accediendo al gestor de acciones y estableciendo las

condiciones de visibilidad o disponibilidad. Este método, es invocado cada vez que uno

de los mddulos se vuelve activo o cuando se produce algin evento en el que estemos
interesados, como pueda ser una actualizacion del estado de la tabla o de posicién de

registro.

Falta mucho para llegar...?

Una de las preguntas tipicas de mi hijo a mitad de un viaje largo, es cuanto falta
para llegar... Es el indicador de que al viaje, por muy entretenido que pueda ser, es
cansado y aqui, si se me permite la comparacién, pasa algo parecido. Porque
descubrimos a medida que vamos ampliando nuestro framework que siempre es posible
mejorar los puntos implementados y considerar nuevos condicionantes que nos den la
sensacion de que el viaje no acaba nunca.

Si ahora estamos disefiando un framework para facilitar nuestro trabajo en tiempo
de diseno, ;Por qué no considerar modificarlo para que los distintos modulos sean
cargados como librerias independientes, sea cual sea el formato que elijamos para
dichos médulos? Ademas, ;para qué anclarnos a la visualizacién en el interior de un
contenedor? Podriamos ver interesante que nuestros modulos tuvieran la capacidad de
generar el contenedor sobre el que se van a visualizar y establecerse como una
aplicacion sdi (y no como la clasica mdi) a voluntad del usuario.

(Alguien hablo de la seguridad? Yo no la he visto por ningun lado. En el ejemplo
me he limitado a guardar el usuario y equipo con el fin de visualizarlo tnicamente. Pero
también podriamos dotar a nuestro desarrollo de un sistema de comprobacion de usuario
y restriccion de opciones a nivel de interfaz, condicionado por el nivel de seguridad de
nuestro usuario.

Y por ultimo y para no hacer de este articulo una historia interminable, podriamos
considerar un sistema de actualizacion integrado en el framework, comin a todas
nuestras aplicaciones y desarrollos.

Es decir que a medida que veamos crecer nuestros requerimientos también
creceran las consideraciones a tener en cuenta en los mddulos finales y recordarlas,
pasados unos meses, puede ser una pesadilla. Por dicha razén, hablaba en las entradas
del blog de que puede ser necesario ayudarnos de un Wizard de creacion de modulos,
que nos facilite la creacion de los mismos de forma automatica y sin tener que recordar
multiples detalles que a largo plazo olvidariamos. En dicho Wizard se plasmarian todos
los comentarios y toda la estructura minima que debemos considerar.

Como decia Nicolds Aragon (Nico) muy acertadamente en una de las entradas del

blog, esto lo podemos hacer de diversas formas y no existe tampoco una razoén, mas que
la de la practicidad, de que se integre en el ide. Lo suyo seria generar un experto, y que
estuviera disponible desde los menus de Delphi pero también podria ser una plantilla

que mediante una aplicacion propia o externa generase las unidades necesarias.

Creo que nada mas... Cualquier comentario adicional, si queréis, lo podemos ver
desde mi blog Recibid un saludo y mi deseo de que pueda haber contribuido en algo

todos estos comentarios.

Salvador Jover

