
Un enfoque modular para nuestra aplicación.

Autor: Salvador Jover

Introducción: Descubriendo nuevos planteamientos

No se si estaréis de acuerdo pero los comienzos de muchos programadores en un

entorno como el nuestro, pasan por etapas que suelen ser comunes a una mayoría,

sobretodo si la persona que toma contacto con el entorno es un programador novel y con

poca o ninguna experiencia. Y me podría poner como ejemplo a mi mismo, recordando

cual era mi visión de la generación de código hace unos años, cuando iniciaba mis pasos

en Delphi, en contraposición a la actual, con algo más de experiencia, donde la

observación de las técnicas empleadas por otros programadores son capaces de sugerirte

nuevas posibilidades en el planteamiento de nuestros desarrollos. Y el motivo, en mi

opinión, no es otro que la metodología usada en el aprendizaje de nuestra herramienta,

que dista bastante de ser la más correcta a largo plazo.

El problema quizás viene en querer obtener resultados inmediatos. Diríamos

usando un dicho popular, eso de empezar nuestra casa por el tejado. Nuestro

programador, al que llamaremos Listillo (por ponerle un nombre), en una primera toma

de contacto descubre el lienzo o formulario y sin darse cuenta, va a entrar en la etapa

que podríamos llamar de “Relación de Objetos”, en la que se le educa en una filosofía

un tanto “dañina”, en la que prima únicamente responder a los eventos producidos por

el sistema y establecer relaciones entre los distintos componentes del interfaz. A Listillo

le basta entender que puede relacionar dos componentes de una forma sencilla, para que

instantáneamente, comience el diseño de su aplicación a través del interfaz que

requerirá el usuario. Es una relación causa-efecto que el mismo entorno favorecerá de

forma involuntaria. Un botón aquí, otro allá. Una casilla de edición aquí y respondiendo

al evento OnKeyDown, una implementación que modifique una etiqueta situada unos

centímetros mas arriba. En el cuento de los tres cerditos este sería el primero de los

hermanos, construyendo su casita con paja. Sobre este punto, recuerdo perfectamente

los comentarios que me hacía un profesor de la Universidad y buen amigo (Francisco

Mora) acerca de estas primeras etapas de aprendizaje, durante un curso especifico de

Delphi. Me explicaba Francisco, como estas primeras etapas se cubren con gran rapidez

y como, al ascender a esa loma imaginaria donde creemos encontrar la cima, solo

descubrimos que existe una verdadera montaña tras ella.

Nuestro programador puede entonces iniciar una segunda etapa en la que se

descubre la creación de componentes y conceptos como herencia, polimorfismo, y otros

muchos mas, propios de la Orientación a Objetos. Bien. Podemos llamar a esa segunda

etapa con ese nombre, que parece adaptarse bien a sus características: “Orientación a

Objetos”.

Relacionar objetos no suele ser suficiente sobretodo si tenemos en cuenta que

muchos de los componentes no se adaptan siempre a los requisitos deseados.

Normalmente adolecerán de alguna función necesaria para nuestro desarrollo.

¿Solución…? Seguramente, la opción más fácil para Listillo es hacer una búsqueda en

foros y paginas especializadas en Internet. Son las típicas preguntas que vemos día a

día: “¿alguien conoce un componente que sea como un panel pero que además luzca un

hermoso gradiente y la etiqueta se pueda situar en dirección horizontal. Es urgente por

favor.” La respuesta suele desembocar en páginas con vocación de almacén donde uno

se sonríe pensando en no volver a trabajar más en una sola línea de código. –Si aquí

tengo de todo, para que pasar trabajo… Solo tengo que echar mano de...

Y esta visión un tanto infantil suele durar hasta que se descubre que a pesar de

existir estos grandes hipermercados de componentes, no siempre se acaba encontrando

lo que uno busca. Y si existe, posiblemente vale un dinero que no se tiene. Por lo que a

menudo, el programador acaba viéndose en la necesidad de tener conocimientos acerca

de la Orientación a Objetos y en poco tiempo entrará de lleno en el mundo de la de la

construcción de componentes. La idea que mueve esta segunda etapa puede ser: “si no

tienes lo que buscas quizás lo puedas construir tu mismo…”. Podríamos relacionar esta

etapa con el segundo cerdito del cuento, el que construía su casa con madera.

Y el lobo sopló, y resopló…

De no haber existido un lobo feroz, los dos cerditos bien hubieran podido vivir

muchos años, más felices que el tío de la tiza (es una expresión de mi pueblo), pero he

aquí que existe ese lobo en forma de nuevos requerimientos para nuestras aplicaciones:

las cuales vemos crecer día a día, y acaban demandando nuevas modificaciones a un

coste razonable. Aquello que antes nos parecía seguro y estable ahora ya empieza a ser

incomodo y la cantidad de horas que dedicamos a reinventar la rueda no llegan a

compensar el flujo monetario de retorno a ese esfuerzo (valorando horas/moneda). Las

referencias entre los distintos módulos, donde todo el mundo es amigo y conoce a todo

el mundo, posiblemente sea una de las razones mas visibles del problema.

Así que podemos finalmente, tras una larga peregrinación, conocer una tercera

etapa en donde intentamos encontrar documentación sobre buenas técnicas de

construcción de software. Y sobre este punto ya es un tanto más difícil encontrar

documentación aplicada a Delphi. Tendríamos que revisar las publicaciones sobre

modelos y patrones de diseño más clásicos y no se aplican a nuestro entorno. Podemos

leer “Patrones de diseño” de Erich Gamma, que ha llegado a ser una verdadera

referencia para muchos programadores. También probé, mientras preparaba los artículos

de ModelMaker, la lectura de “UML y Patrones” de Craig Larman, (también de la

editorial Prentice Hall) pero una siempre acaba por preguntarse como aplicar lo que lee

a sus desarrollos sin perder un tiempo que no se tiene.

Reconozcamos que no es demasiado habitual este enfoque en las publicaciones

que podemos encontrar sobre Delphi, las cuales basan el esfuerzo mayor en “mostrar” y

no tanto en “rentabilizar”. Decía Ian Marteens al principio del capítulo 23 de “La cara

oculta de Delphi 6: (Herencia visual y prototipos):

“La clave para desarrollar aplicaciones, y no perder dinero en el proceso, es

terminarlas lo antes posible. Y cuando se programa en Delphi, una de las principales

ayudas la ofrece un recurso conocido como herencia visual, que permite definir

prototipos de formularios con el diseño visual y el código fuente común de varias

ventanas”.

Y prosigue durante 10 páginas más, un pequeño proyecto en el que hace uso de

esta técnica. Yo os aconsejaría su lectura, sobretodo para aquellos que andan buscando

sistemas modulares basados en la herencia visual.

Pero este artículo, el que ahora nos ocupa, nace en el contexto de la publicación de

las tres entradas de mi blog de fechas 4, 5 y 8 de Mayo, donde me quejaba de este

último tema (al hablar de la necesidad de crear un buen Framework) y de otros más

relacionados. Así que es un buen momento para empezar a verlo sin más demora.

El framework de Developer Express.

Posiblemente, existan muchas formas de hacer lo mismo que la planteada en las

páginas web de esta empresa, conocida por unos componentes de gran calidad y no

menos complejidad.

En una de las secciones de su Web, intentaban educar a sus desarrolladores dentro

de lo que entienden como buenas prácticas de desarrollo y se mostraba un buen ejemplo

de desarrollo modular. Actualmente ya no existe dicho enlace, al menos yo no he

podido encontrarlo y quizás por esa razón, y movido por la publicación de todos los

comentarios escritos en las entradas del blog, pensé que valía la pena recoger esa idea y

retomarla, respetando el espíritu de quien la había creado. Podéis ver un poco mas

arriba una imagen que muestra la relación de las clases en un diagrama, tal y como se

plantea en el ejemplo que vamos a comentar.

En la siguiente imagen podéis apreciar como se relacionan los módulos principales

(se han dejado los mínimos con el fin de que se aprecie mejor). Una vez, visto, ya

podremos empezar a contar qué se persigue y como se llega al resultado.

El objetivo que se persigue es trabajar con nuestro desarrollo permitiendo que

podamos extender de forma sencilla nuevos módulos que amplíen su funcionalidad.

Básicamente es eso. Aquí la inversión de tiempo la haremos en la primera fase de

diseño del proyecto y se rentabilizara a medida que va siendo extendida.

Supongamos que queremos que añadir a nuestro desarrollo un modulo de

personal, representado en una rejilla y una ficha de edición para el registro de datos. La

idea es que sea el propio modulo que va a ser añadido, el que registre qué acciones debe

habilitar el interfaz principal cada vez que se active y asimismo, personalice los

distintos menús, barras de botones y paneles de opciones. Justo al contrario de cómo

razonaba nuestro programador, Listillo, en las primeras etapas vividas. Si pudiéramos

ojear su código en aquellos momentos, probablemente observaríamos que la creación de

los distintos formularios sería responsabilidad de la ventana principal o conocida por

ella y esto, aunque no es malo en si mismo, sí impide la modularidad puesto que

trabajamos con la idea concreta de la clase de módulo y no con su abstracción.

Finalmente y volviendo al ejemplo actual, podemos comentar que esta

información debe ser recogida y gestionada por alguien (ya veremos quien) que

finalmente informará a nuestro interfaz principal de las acciones a tomar. Si os fijáis,

este esquema de trabajo, evita que la ventana principal “conozca” cada uno de los

módulos añadidos, eliminando referencias que nos condicionarían en un desarrollo

modular.

Una imagen de nuestro framework:

El gestor de acciones

Empecemos a razonar las distintas entidades que participaran y como primer

objetivo, tenemos aquella que se ha de preocupar de gestionar y recoger qué acciones

habilitaran cada uno de los módulos. En términos de clases necesitamos una que asuma

las demandas propias del objetivo encomendado, como pueden ser informar del número

de acciones almacenadas y permitir una referencia segura a las mismas, de forma que

puedan ser ejecutadas.

Estudiemos algunos detalles de su interfaz público:

TdmAppActions = class (TDataModule)
 private
 procedure ActionManagerExecute(Action: TBasicAction; var Handled:
Boolean);
 …
 public
 constructor Create(AOwner: TComponent); override ;
 destructor Destroy; override ;
 property ActionCount: Integer read GetActionCount;
 property Actions[Index: Integer]: TBasicAction read GetAction;
 property Key: string read GetKey;
 property Pc: string read FPc;
 property Usuario: string read FUsuario;
 property ManejadorDeAcciones: TActionManager read FManejadorDeAcciones
write SetManejadorDeAcciones;
 end ;

Lo primero que observamos en el modulo dmActions es que la primera invocación

de la función global AppActions será responsable de crear la instancia del objeto

contenedor de acciones o bien devolver una referencia al mismo si ya está creado.

function AppActions: TdmAppActions;
begin
 if(dmAppActions = nil) then
 dmAppActions := TdmAppActions.Create(Applicatio n);
 Result := dmAppActions;
end;

Respecto al ejemplo de Developer Express, se puede apreciar que he movido el

componente TActionManager, que originalmente se sitúa dentro del datamodule hacia

la ventana principal, por motivos del cambio de componentes en la interfaz principal.

Esto origina que necesite una propiedad adicional para realizar la asignación de la

referencia FManejadorDeAcciones e intente garantizar que dicho puntero siempre

contenga una referencia valida al acceder a la matriz de acciones. Una opción podría

haber sido redefinir el constructor pero partimos de que el modulo de datos se crea antes

que la ventana principal por lo que difícilmente podríamos conocer en ese momento el

parámetro de la clase TActionManager.

En el procedimiento de escritura de propiedad, es decir, cuando se produce la

asignación valida de la referencia, asignamos el evento OnExecute del componente

ActionManager que nos permitirá enlazar con el modulo responsable de resolver el

estado de cada acción y ejecutarla.

procedure TdmAppActions.SetManejadorDeAcciones(const Value: TActionManager);
begin

 FManejadorDeAcciones := Value;
 if FManejadorDeAcciones <> nil then begin
 FManejadorDeAcciones.OnExecute:= ActionManager Execute;
 FakeVCLActions;
 end
 else FManejadorDeAcciones.OnExecute:= Nil ;
end;

procedure TdmAppActions.ActionManagerExecute(Action: TBasicA ction; var
Handled: Boolean);
begin
 // Llamada al metodo de ejecución de modulo activo (el visualizado)
 if (ModuleInfoManager.ActiveModuleInfo <> nil) then
 Handled:= ModuleInfoManager.ActiveModuleInfo.Mo dule.ExecuteAction(Action);
end ;

Precisamente, cuando resolvemos:

ModuleInfoManager.ActiveModuleInfo.Module.ExecuteAction(Action);

lo que estamos pidiendo al Manejador del Módulos (ModuleInfoManager), la clase

experta en la gestión de los distintos módulos, es que se ejecute la acción correcta en el

Modulo activo, el que visualiza en ese momento la interfaz del usuario.

 Falta comentar, antes de poner nuestros ojos en las siguientes clases, que para no

complicar excesivamente este artículo, he omitido conscientemente una serie de

métodos que debería implementar la clase TdmAppActions. Estos métodos nos deberían

permitir recargar dinámicamente el contenedor de acciones en el momento en el que un

nuevo módulo se une. De esa forma, estaríamos mas cerca de alcanzar ese objetivo de

trabajar modularmente en tiempo de ejecución, mediante la carga de librerías que

encapsulen cada nuevo modulo añadido. Ahora mismo, tal y como está planteada la

aplicación, nos estamos conformando con trabajar modularmente en tiempo de diseño.

¿Quién es quien…? ¡Vaya lio…! ☺☺☺☺

Lo mejor es que abráis en un editor de texto el modulo Modules.pas y nos

centremos en las tres clases que aparecen:

TCategoryInfo

TModuleInfo

TModuleInfoManager

¿Qué hace cada una de ellas? Intentemos explicarlo:

Para aislar nuestra ventana principal de las clases concretas de cada módulo

añadido, se propicia que el gestor de módulos (TModuleInfoMaganer) siempre trabaje

con una abstracción de una clase concreta, común a todos los módulos añadidos. Para

nosotros, esa abstracción será TfrmCustomModule, el ascendiente obligado en la

creación de nuevas clases que pueda gestionar TModuleInfoManager.

Así pues, nuestra instancia global de la clase TModuleInfoManager, es el

verdadero corazón del framework y será responsable de:

-Ordenar la visualización de un modulo a demanda del usuario.

-Mantener y dar acceso a una lista de categorías que puedan agrupar los distintos

módulos. Por ejemplo, podemos tener una categoría genérica COMPRAS que aglutina

distintos módulos vinculados directamente con ella, como por ejemplo el alta de

proveedores o la generación de un albaran de entrada de existencias. Este punto muestra

la relación o vínculo existente entre las clases TCategoryInfo y TModuleInfoManager.

La clase TCategoryInfo es una clase auxiliar que se responsabilizará de guardar la

información de cada una de las categorías. La clase TModuleInfoManager se apoyará en

esa información en determinados momentos (por ejemplo al agrupar modulos por

categorías)

-Mantener y responsabilizarse del registro de cada modulo. Esta parte es clave ya

que se va a establecer una relación real entre el nombre genérico del módulo con su

clase, lo que permitirá que el interfaz sea capaz de invocar cada modulo simplemente

obteniendo el nombre del mismo y sin conocer la clase concreta que va finalmente a

llamar.

-Mantener y dar acceso a una lista de módulos con la información asociada a cada

uno de ellos. Esta es la vinculación que existe entre la clase TModuleInfoManager y la

clase TModuleInfo, que será responsable de guardar la información que recibe del

registro de cada uno de los módulos.

-Asegurar una referencia válida al modulo activo, que es el que visualiza el

usuario. Cualquier otra clase, se dirigirá a ésta para obtener el frame activo a través de la

propiedad ActiveModuleInfo

Podemos ver su interfaz:

 TModuleInfo = class (TObject)
 private
 FCategory: TCategoryInfo;
 FHasParametros: Boolean;
 FImageIndex: Integer;
 FModule: TfrmCustomModule;
 FModuleClass: TfrmCustomModuleClass;
 FName: string ;
 procedure DoModuleDestroy(Sender: TObject);
 function GetActive: Boolean;
 protected
 procedure AsignaParametros(AParametros: Array of Variant);
 procedure CreaModulo(AParametros: Array of Variant);
 procedure DestroyModule;
 public
 constructor Create(const AName: string ; AModuleClass:
TfrmCustomModuleClass;
 ACategory: TCategoryInfo; AImageIndex: Integer = -1);
 destructor Destroy; override ;
 procedure Abrir(AParent: TWinControl);
 procedure AbrirConParametros(AParent: TWinControl; AParametr os: Array of
 Variant);

 function HasParametros: Boolean;
 procedure Hide;
 property Active: Boolean read GetActive;
 property Category: TCategoryInfo read FCategory;
 property ImageIndex: Integer read FImageIndex;
 property Module: TfrmCustomModule read FModule;
 property Name: string read FName;
 end ;

Pero lo mas interesante para poder comprender como se relacionan las distintas

clases es reproducir la cadena de llamadas desde el modulo concreto. Todo empieza

cuando el modulo invoca las funciones de registro en su inicialización.

initialization
 ModuleInfoManager.AddCategory('Home', 0);
 ModuleInfoManager.RegisterModule('Help', TwndLogo ,
ModuleInfoManager.GetCategoryByName('Home'), 0);

Es decir, que al inicializarse añadimos la categoría si es necesario y registramos en

el Gestor de módulos el nombre de la clase, la clase y la categoría asociada a la misma.

El último parámetro será la imagen mostrada por el interfaz (0).

La llamada al procedimiento RegisterModule la tenéis a continuación:

procedure TModuleInfoManager.RegisterModule(const AName: string ; AModuleClass:
 TfrmCustomModuleClass; ACategory: TCategory Info = nil ; AImageIndex:
 Integer = -1);
var
 AModuleInfo: TModuleInfo;
begin
 //Aqui se podria revisar la seguridad antes de regi strar el modulo
 AModuleInfo := GetModuleInfoByName(AName);
 //Es lanzada una excepcion si el modulo ya existe c on el mismo nombre
 if (AModuleInfo <> nil) then
 raise Exception.CreateFmt('El módulo con nombre "%s" ya e xiste', [AName]);
 // Creamos una categoria si no existe todavía
 if CategoryCount = 0 then
 AddCategory('Default', -1); //por defecto le llamamos "Default"
{ if ACategory = nil then
 ACategory := Categories[0]; } //dejamos que AC ategory pueda ser nil
 // Creamos la instancia de información y la añadimo s a la lista
 AModuleInfo := TModuleInfo.Create(AName, AModuleC lass, ACategory,
AImageIndex);
 FModuleList.Add(AModuleInfo);
end ;

Lo mas destacado es el objetivo final: crear una instancia de la clase TModuleInfo

y guardarla en una lista, de forma que permita al gestor de módulos obtener al

información que necesita para poder trabajar con la clase genérica y resolver

correctamente en la clase concreta, apoyándose en el polimorfismo y la redefinición de

métodos de las clases concretas.

Más que comentar línea a línea de código, quizás lo más efectivo es ejecutar desde

Delphi la aplicación que se entrega de ejemplo, paso por paso, para ver sobre el terreno

el orden de llamada de las distintas funciones y procedimientos. No obstante, sí que

debería comentar, que al estudiar los nuevos requerimientos que me pedía este ejemplo,

frente al original de Developer Express, me vi en la necesidad de añadir un

procedimiento AbrirModuloConParametros, que nos permitiera adaptarnos a la

necesidad de tener parámetros adicionales al activar el módulo, como pudiera ser en el

caso de que el modulo representara una ficha de edición y recibiera como parámetro la

clave primaria del registro, para así abrir de forma parametrizada el dataset. O como

también sucede, un parámetro que represente la operación que deseamos efectuar [ver la

constante TOperacion que se declara en el modulo de acciones]. Un ejemplo de esto precisamente

lo tenéis en la Edición de Fichas de Empleados (uEditEmpleado.pas). Sobre este punto

y hablando del parámetro matricial abierto de tipo Array of Variants, sería interesante

que buscarais en mi blog un par de entradas que hablan acerca de este tema, con el título

¿Te topaste con un variant?

Por no perder demasiado tiempo, en el ejemplo me he valido de una tabla en lugar

de hacer uso de una consulta, lo cual no resulta demasiado afortunado pero sí rápido,☺.

Quiero decir con esto, que en condiciones normales, en una aplicación cliente-servidor

deberíamos de restringir los registros de la rejilla garantizando que retornan una

cantidad apropiada. En muchos casos, podría ser interesante interponer, antes de su

presentación visual, un sistema de filtro en forma de ventana, permitiendo al usuario

seleccionar el rango de registros a mostrar. En ese punto, podría ayudarnos el evento

OnShowModule que hemos implementado en la clase TfrmCustomModule, y que se

dispara antes de visualizarse el frame.

Hay una línea de código que puede pasar desapercibida y que también me gustaría

comentar. Mirad la implementación del procedimiento Abrir de la clase TModuleInfo y

concretamente la línea en que se produce la asignación del nombre genérico del modulo

(FName) al ascendente de la clase concreta, representado en la referencia Module.

procedure TModuleInfo.Abrir(AParent: TWinControl);
begin
 if Module = nil then CreaModulo([]);
 Module.Parent := AParent;
 Module.Align := alClient;
 Module.ModuloName:= FName; // �- Interesante
 Module.Show;
end;

Esta línea la añadí con el fin de que previa a la ejecución del método Show, que

hará que nuestro modulo se convierta en el modulo activo, podamos a través del nombre

obtener algunas funcionalidades adicionales, desde el mismo modulo descendiente y

tras haber sobrescrito el mensaje de Windows que recibe la ventana al ser activada.

Tomad por ejemplo una misma clase que se registre en distintos módulos y que previa a

su visualización, según quien la invoque haga o muestre cosas distintas.

El cabeza de familia: TfrmCustomModule y sus hijos…

Una vez que hemos presentado, por un lado aquella clase (TdmAppActions) que

gestiona las acciones disponibles para cada módulo. Y por otro lado, el grupo de clases

que gestionan la presentación de cada uno de ellos y su acceso desde el interfaz

principal (TmoduleInfoManager, TModuleInfo y TcategoryInfo), nos queda estudiar la

clase TfrmCustomModule, ascendiente de cada uno de los módulos que queramos

añadir.

Veamos su interfaz y el de uno de sus descendientes, y comentemos lo que nos

parezca más interesante.

 TfrmCustomModule = class (TFrame)
 dsGeneral: TDataSource;
 procedure dsGeneralDataChange(Sender: TObject; Field: TField);
 procedure dsGeneralStateChange(Sender: TObject);
 private
 FAcciones: TAcciones;
 FHasParametros: Boolean;
 FOnDestroy: TNotifyEvent;
 FPc: string ;
 FUsuario: string ;
 FSupportedActionList: TList;
 FOnShowModule: TNotifyEvent;
 FModuloName: String ;
 function GetKey: string ;
 function GetNotificationByAction(Action: TBasicAction):
TActionNotification;
 procedure SetModuloName(const Value: String);
 procedure SetAcciones(const Value: TAcciones);
 protected
 procedure DoShowModule; virtual ;
 //acciones básicas de gestion de tablas
 procedure DoActionAlta(Action: TBasicAction); virtual;
 procedure DoActionAnterior(Action: TBasicAction); virtual ;
 procedure DoActionCancelar(Action: TBasicAction); virtual ;
 procedure DoActionEliminar(Action: TBasicAction); virtual ;
 procedure DoActionGuardar(Action: TBasicAction); virtual ;
 procedure DoActionModificar(Action: TBasicAction); virtual ;
 procedure DoActionPosterior(Action: TBasicAction); virtual ;
 procedure DoActionPrimero(Action: TBasicAction); virtual ;
 procedure DoActionUltimo(Action: TBasicAction); virtual ;

 procedure RegisterAction(const Action: TBasicAction; ANotification:
 TActionNotification);
 procedure RegisterActions; virtual ;

 procedure GoToFicha(const AOperacion: TOperacion); virtual; abstract;

 property Key: string read GetKey;
 property Pc: string read FPc;
 property Usuario: string read FUsuario;
 public
 procedure WMNCPaint(var Msg: TMessage); message WM_NCPAINT;
 constructor Create(AOwner: TComponent); override ;

 constructor CreateWithParams(AOwner: TComponent; AParams: Array of
Variant);
 virtual ;
 destructor Destroy; override ;
 procedure AsignaParametros(AParams: Array of Variant); virtual ;
 function ExecuteAction(Action: TBasicAction): Boolean; override ;
 function HasParametros: Boolean;
 function IsActionSupported(Action: TBasicAction): Boolean;
 function HayCambios: Boolean; virtual ;
 procedure UpdateActionsState; virtual ;
 procedure UpdateActionsVisibility; virtual ;
 property OnDestroy: TNotifyEvent read FOnDestroy write FOnDestroy;
 property OnShowModule: TNotifyEvent read FOnShowModule write
FOnShowModule;
 property ModuloName: String read FModuloName write SetModuloName;
 property Acciones: TAcciones read FAcciones write SetAcciones;

 end ;

TwndAnimales = clas s(TfrmCustomModule)
…
 private
 { Private declarations }
 fDatos: TdmAnimales;
 procedure DoBeforeShow(Sender: TObject);
 protected
 procedure DoActionAlta(Action: TBasicAction); override ;
 procedure DoActionModificar(Action: TBasicAction); override ;
 procedure DoActionEliminar(Action: TBasicAction); override ;
 procedure DoActionCancelar(Action: TBasicAction); override ;
 procedure RegisterActions; override ;
 procedure GoToFicha(const AOperacion: TOperacion); override ;
 public
 { Public declarations }
 constructor Create(AOwner: TComponent); override ;
 destructor Destroy; override ;
 procedure UpdateActionsState; override ;
 end;

La clase TfrmCustomModule se diseña con el fin de que pueda servir como

aglutinante de todos los módulos descendientes de el, y como podemos imaginar,

contiene toda la funcionalidad mínima común a todos los módulos hijos. En el caso que

nos ocupa, la clase TwndAnimales, que debería mostrar la tabla de animales de la base

de datos dbdemos.gdb, tan solo tiene que registrar todas las acciones que desea activar

en el interfaz.

procedure TwndAnimales.RegisterActions;
begin
 inherited RegisterActions;

 RegisterAction(AppActions.Actions[KALTA], DoActio nAlta);
 RegisterAction(AppActions.Actions[KMODIFICAR], Do ActionModificar);
 RegisterAction(AppActions.Actions[KELIMINAR], DoA ctionEliminar);
 RegisterAction(AppActions.Actions[KGUARDAR], DoAc tionGuardar);
 RegisterAction(AppActions.Actions[KCANCELAR], DoA ctionCancelar);
 RegisterAction(AppActions.Actions[KPRIMERO], DoAc tionPrimero);
 RegisterAction(AppActions.Actions[KANTERIOR], DoA ctionAnterior);
 RegisterAction(AppActions.Actions[KPOSTERIOR], Do ActionPosterior);
 RegisterAction(AppActions.Actions[KULTIMO], DoAct ionUltimo);
end;

Algunas de estas acciones registradas, podría darse el caso de que fueran comunes

a todos los módulos, que es el caso actual de los procedimientos de navegación, alta,

baja y modificación de los registros, y de los que existe con un comportamiento por

defecto en el TfrmCustomModule. Bastaría sobrescribirlos como hemos hecho en las

acciones DoActionAlta, DoActionEliminar y DoActionCancelar

Veamos el ejemplo del procedimiento Eliminar, que es sobrescrito para dar la

oportunidad al usuario de prevenir un borrado accidental:

procedure TwndAnimales.DoActionEliminar(Action: TBasicAction);
Var
 MsgText, MsgCaption : String ;
 NL : String ;
 MsgType, UserResp : integer;
begin
 NL := #13 + #10; {New Lin}
 MsgCaption := '¿Deseas eliminar el registro acti vo (umodulo)?';
 MsgText := MsgText + 'Pulsa Ok para eliminar el registro activo.' + NL;
 MsgText := MsgText + 'Si deseas cancelar pulsa C ANCEL.';
 MsgType := MB_OKCANCEL + MB_ICONWARNING + MB_DEF BUTTON2 + MB_APPLMODAL;

 UserResp := MessageBox(Handle, PChar(MsgText), PChar(MsgCaption),
MsgType);
 Case UserResp of
 IDOK :
 begin
 inherited ;
 end ;
 IDCANCEL :
 begin
 end ;
 end ;
end ;

Nos falta conocer de que forma, el modulo descendiente condiciona la visibilidad

o la disponibilidad de las distintas acciones. Veamos como lo hace:

procedure TwndAnimales.UpdateActionsState;
begin
 with AppActions, dsGeneral do begin
 TAction(Actions[KALTA]).Enabled := (State in [dsBrowse]);
 TAction(Actions[KMODIFICAR]).Enabled := (State in [dsBrowse]);
 TAction(Actions[KELIMINAR]).Enabled := (State in [dsBrowse]);
 TAction(Actions[KGUARDAR]).Enabled := (State in [dsEdit, dsInsert]) and
 DataSet.Modified;
 TAction(Actions[KCANCELAR]).Enabled:= (State in [dsEdit, dsInsert]);
 TAction(Actions[KPRIMERO]).Enabled := (State in [dsBrowse]);
 TAction(Actions[KANTERIOR]).Enabled := (State in [dsBrowse]);
 TAction(Actions[KPOSTERIOR]).Enabled := (State in [dsBrowse]);
 TAction(Actions[KULTIMO]).Enabled := (State in [dsBrowse]);
 end ;
end ;

Al sobrescribir el metodo UpdateActionsState, que es virtual en la clase

TfrmCustomModule, conseguimos condicionar las acciones de acuerdo al estado

booleano deseado, tan solo accediendo al gestor de acciones y estableciendo las

condiciones de visibilidad o disponibilidad. Este método, es invocado cada vez que uno

de los módulos se vuelve activo o cuando se produce algún evento en el que estemos

interesados, como pueda ser una actualización del estado de la tabla o de posición de

registro.

¿Falta mucho para llegar…?

Una de las preguntas típicas de mi hijo a mitad de un viaje largo, es cuánto falta

para llegar... Es el indicador de que al viaje, por muy entretenido que pueda ser, es

cansado y aquí, si se me permite la comparación, pasa algo parecido. Porque

descubrimos a medida que vamos ampliando nuestro framework que siempre es posible

mejorar los puntos implementados y considerar nuevos condicionantes que nos den la

sensación de que el viaje no acaba nunca.

Si ahora estamos diseñando un framework para facilitar nuestro trabajo en tiempo

de diseño, ¿Por qué no considerar modificarlo para que los distintos módulos sean

cargados como librerías independientes, sea cual sea el formato que elijamos para

dichos módulos? Además, ¿para qué anclarnos a la visualización en el interior de un

contenedor? Podríamos ver interesante que nuestros módulos tuvieran la capacidad de

generar el contenedor sobre el que se van a visualizar y establecerse como una

aplicación sdi (y no como la clásica mdi) a voluntad del usuario.

¿Alguien hablo de la seguridad? Yo no la he visto por ningún lado. En el ejemplo

me he limitado a guardar el usuario y equipo con el fin de visualizarlo únicamente. Pero

también podríamos dotar a nuestro desarrollo de un sistema de comprobación de usuario

y restricción de opciones a nivel de interfaz, condicionado por el nivel de seguridad de

nuestro usuario.

Y por último y para no hacer de este artículo una historia interminable, podríamos

considerar un sistema de actualización integrado en el framework, común a todas

nuestras aplicaciones y desarrollos.

Es decir que a medida que veamos crecer nuestros requerimientos también

crecerán las consideraciones a tener en cuenta en los módulos finales y recordarlas,

pasados unos meses, puede ser una pesadilla. Por dicha razón, hablaba en las entradas

del blog de que puede ser necesario ayudarnos de un Wizard de creación de módulos,

que nos facilite la creación de los mismos de forma automática y sin tener que recordar

múltiples detalles que a largo plazo olvidaríamos. En dicho Wizard se plasmarían todos

los comentarios y toda la estructura mínima que debemos considerar.

Como decía Nicolás Aragón (Nico) muy acertadamente en una de las entradas del

blog, esto lo podemos hacer de diversas formas y no existe tampoco una razón, mas que

la de la practicidad, de que se integre en el ide. Lo suyo sería generar un experto, y que

estuviera disponible desde los menús de Delphi pero también podría ser una plantilla

que mediante una aplicación propia o externa generase las unidades necesarias.

Creo que nada mas… Cualquier comentario adicional, si queréis, lo podemos ver

desde mi blog Recibid un saludo y mi deseo de que pueda haber contribuido en algo

todos estos comentarios.

Salvador Jover

